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Abstract: In induction motor, condition monitoring gathers 

much attention which improves the reliability and requires 

lesser cost of maintenance.  There is significant research 

space for improvement in algorithms and techniques for 

analyzing the condition of an induction motor.  In 

induction motor failures distribution, around 40% of the 

failures is due to roller bearing faults. In this work, roller 

bearing faults such as outer race faults and inner race 

faults are analyzed using multi support vector machine. 

The vibration signals of outer and inner race faults along 

with normal bearing for various loads are considered for 

this analysis. The 3 dimensional (3D) images are plotted 

using the data obtained from the vibration signals. Fractal 

features like fractal dimension, fractal average, fractal 

standard deviation and lacunarity are extracted from these 

images using four types of filters namely sobel, prewitt, 

roberts and canny. These features are fed as input for 

multi support vector machine (MSVM) for the 

identification of different types of roller bearing faults 

using four types of kernel known as Gaussian, RBF, 

polynomial and sigmoidal. MSVM is operated in two 

approaches and are one versus one and one versus all. 

The performance of the MSVM with two different 

approaches is compared with other methods like Linear 

discriminant classifier (LDC), Quadratic discriminant 

classifier (QDA), Decision tree, K-nearest neighbour 

classifier. RBF kernel based MSVM with one versus all 

approach using roberts filter in box counting method 

provides better performance compared to other methods 

due to its gain flexibility and good sample-out-of 

generalization. 
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1. Introduction 
Bearing components in induction motor (IM) 

plays a critical role in operational performance and 

reliability of the system. Therefore, it necessitates the 

development of a condition monitoring and fault diagnosis 

system to reduce the malfunctioning of the ball bearing. 

Vibration analysis is commonly used in the detection of 

roller bearing failures [1]. The fault diagnosis method 

comprises of pattern recognition and classification 

paradigms in which feature extraction is the crucial role. 

The effective and accurate classification of roller bearing 

faults depends on the salient feature extraction and 

reducing the dimensionality [2]. 

In roller bearing fault diagnosis, a large amount of data is 

collected from the operating machinery. Extraction of 

feature is difficult as the relevant information might be 

submerged inside the large data pool. Principal component 

analysis [3], multi-dimensional scaling [4] and linear 

discriminate analysis [5] were used for reduction of 

redundant data. But, these feature extraction methods work 

effectively only in linear data with gaussian distribution 

whereas vibration signal of IM is nonlinear in nature.  

The roller bearing faults can be predicted both in 

time domain and in frequency domain response of the 

system. Numerous feature extraction methods have been 

proposed based on time domain analysis and in frequency 

domain analysis [6]. Time domain features, namely, 

waveform length, slope sign changes, simple sign integral 

and wilson amplitude are used for the identification of 

roller bearing fault in IM [7]. Once fault occurs in roller 

bearing, it is followed by the occurrence of changes in the 

characteristic components of the frequency spectrum. The 

methods employing both time-frequency analysis are 

wavelet analysis [8], empirical mode decomposition 

(EMD) [9], envelope analysis [10], symbolic 

transformation [11], cepstrum analysis [12], the kurtogram 

[13], nonlinear features [14], etc. The feature extraction 

based on empirical wavelet transform and multiscale 

entropy is used for analyzing the vibration signals [15]. 

Sammon mapping [16] and neuroscale method 

[17] are the traditional techniques used for non linear 

mapping. Yang [18] proposed a time series principal 

manifold learning based noise reduction method. 

However, this traditional non linear method is an 

unsupervised learning method and does not yield accurate 

results for supervised learning problems. 

For classification of faults, many types of 

classifiers are used by the researchers. For a decade, 

support vector machine (SVM) has been used for the 

binary fault classification in condition monitoring and fault 

diagnosis of machines [19]. SVM and artificial neural 

network (ANN) for fault and no-fault recognitions were 

improved by the use of genetic algorithm (GA) based 

feature selection process [20].  SVM with radial basis 

function (RBF) kernel and the weighted SVM along with 

GA were also used for the binary classification [21] [22]. 

C-SVC parameters and feature subset simultaneously with 

SVM classification was implemented using evolutionary 

algorithms [23]. A comparative analysis of proximal SVM 

using the Morlet wavelet was applied for the bevel 

gearbox [24]. SVM technique is used to detect and classify 

mailto:anuprakad@gmail.com


multiple gear-fault conditions using frequency domain 

vibration signals [25].  

In this paper, as a new attempt, non linear data 

handling difficulty is addressed by converting the vibration 

data into 3D images. Fractal features like fractal dimension 

(FD), fractal dimension average (FDavg), fractal 

dimension standard deviation (FDsd) and Lacunarity (Lac) 

are extracted using box counting algorithm. These features 

consist of geometry information and the class information 

of the data. Based on literatures, SVM has still very little 

efforts in multi-fault classification for electrical 

machineries.  In this work, multi support vector machine 

(MSVM) is used for the fault classification of IM roller 

bearing. The training and testing data which comprises of 

fractal features have been selected at same rotational 

speed. Classification of faults is performed for different 

types of kernel functions. Recognition of MSVM based 

fault classification is greatly improved when compared 

with Linear discriminant classifier (LDC), Quadratic 

discriminant classifier (QDA), Decision tree, K-nearest 

neighbour classifier.  

The article is organized as follows: Section 2 

shows the characteristics of vibration signal of IM. Section 

3 explains box counting method and feature classification. 

Section 4 describes the MSVM based fault classifier. 

Section 5 presents the results and discussion. Section 6 

provides the conclusion. 

2. Characteristics of vibration signal 

The ball bearing faults in IM is pronounced as fault 

frequencies in the machine vibrations. The magnitude of 

these frequencies depends on the surface of the bearings 

containing the faults.  The components of vibration 

frequency are related to four basic fault frequencies, and 

are fundamental train frequency (FTF), ball spin frequency 

(BSF), ball pass outer race (BPFO) and ball pass inner race 

(BPFI) [19]. Table 1 gives the specifications of the test rig 

equipped with roller bearing. 

Table 1 Specification of roller ball bearing 

Parameter Magnitude 

Roller diameter  0.235 

Pitch diameter  1.245 

Number of elements  8 

Contact angle  0 

Number of balls 8 

Ball diameter 5.97mm 

Ball pitch diameter 31.62mm 

FTF 0.5935*shaft speed 

BPFO 3.245*shaft speed 

BPFI 4.755*shaft speed 

BSF 2.5564*shaft speed 

shaft speed 25 Hz 

Data sets used for analysis in this work are available in 

data-acoustics.com database. These data sets are capable 

of producing the required features for fault identification 

under various conditions. The vibration signal measured 

for 270 lbs load for normal, outer race and inner race 

conditions are shown in Figure 1. 

 
(a) 

 
(b) 

 
(c) 

Fig. 1. Vibration signal 

(a) Normal bearing condition (b) Outer race fault (c) 

Inner race fault 

 1.1 Extraction of 3D data 

In the data acquisition system, of vibration signal in IM, 

the no. of samples and amplitude are measured.  From the 

measured signal, 3D distribution plot has been drawn 

between no. of samples, amplitude and the number of 

occurrence of every sample. The data acquisition is 

sampled at a rate of 97,656 samples per second, for 6 

seconds. But only 5000 samples are considered for 

analysis. Figure 2 shows the 3D plot for normal bearing 

condition, outer race and inner race roller bearing faults of 

IM. 
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Fig. 2. 3D plot 

(a) Normal (b) Outer race fault (c) Inner race fault 

 

3. Box Counting Method 

The box counting analysis is an appropriate method of 

fractal dimension estimation for images with or without 

self-similarity. Fractal dimension is due to its ability to 

summarize the whole dataset in one value [ios paper]. A 

famous technique to calculate fractal dimension is the grid 

dimension method popularly known as box-counting 

method. In this method, initially 3D image is converted to 

black and white image known as fractal. Then the edges of 

the fractal are detected using four types of filters namely 

Sobel, Prewitt, Roberts and Canny. Edge detected 3D 

fractal is then covered with square boxes and then the 

number of boxes (m) needed to cover image is calculated. 

This process is repeated with different box sizes. Then the 

logarithmical function of box sizes (x-axis) and number of 

boxes needed to cover fractal (y-axis) is plotted. Then the 

best fit is evaluated for this plot. The slope of this plot 

referred to as the fractal dimension.  
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(c) (d) 

Fig.3. Box counting method for inner race fault   

(a) blackwhite-3D image (b) edge detected image-sobel filter,  

(c) plot for Fractal dimension (d) logarithmic fit curve 



The features extracted in this method are Fractal Dimension 

(FD), Fractal Dimension Average (FDavg), Fractal 

Dimension Standard Deviation (FDsd) and Lacunarity (L). 

Lacunarity is a measure of how the data fills the space. It 

complements fractal dimension, which measures how much 

space is filled. L quantifies the denseness of the surface and 

calculated using Equation (1). 
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where ),( Lmp  is the probability having m boxes within a 

size of box L, and N is the number of possible points within the 

box. ),( Lmp is normalized for all L. For the sake of simplicity, 

box counting method with sobel filter applied to inner race fault is 

shown in Figure 3. Figure 3 shows the fractal image of inner race 

fault, edge detected fractal, logarithmic plot and best fit of inner 

race fault. Table 2 lists out the fractal features evaluated for 

normal bearing condition, inner race fault and outer race 

fault conditions for roller bearing faults in induction motor.  

 

Table 2  Fractal Features extracted by box counting method 

Ball bearing 

condition 

FD   FDavg FDsd Lacunarity 

Sobel filter 

Normal bearing 1.5488 0.9163 0.8945 0.4764 

Inner race fault 1.6048 0.9262 0.9597 0.5368 

Outer race fault 1.572 0.9122 0.9331 0.5232 

Prewitt filter 

Normal bearing 1.5512 0.9162 0.8979 0.4802 

Inner race fault 1.604 0.9262 0.9586 0.5356 

Outer race fault 1.5754 0.9114 0.939 0.5307 

Roberts filter 

Normal bearing 1.5389 0.9166 0.8801 0.461 

Inner race fault 1.596 0.9272 0.9458 0.5203 

Outer race fault 1.5633 0.9131 0.9195 0.507 

Canny filter 

Normal bearing 1.5535 0.918 0.8987 0.4742 

Inner race fault 1.6123 0.9264 0.9699 0.5481 

Outer race fault 1.5797 0.9124 0.9436 0.5348 

4. Ball Bearing Fault Classification  

In this proposed work, identification of roller bearing faults 

is done by multi SVM classifier. Using the extracted fractal 

features, Gaussian, radial basis function (RBF), polynomial 

and user defined sigmoidal kernel function are used in 

MSVM for classifying three different conditions of ball 

bearing in IM.  To prove the efficiency of the proposed 

classifier, the recognition rate is compared with Linear 

discriminant classifier (LDC), Quadratic discriminant 

classifier (QDA), Decision tree, K-nearest neighbour 

classifier and MSVM with two features as input. 

4.1 Linear discriminant classifier  

 LDC uses training data to estimate the 

parameters of discriminant functions of the predictor 

variables. LDC searches with linear combinations of selected 

variables in order to provide the best separation between the 

measured classes. These linear combinations are called 

discriminant functions. Discriminant functions are used to 

find the the boundaries in predictor space between the three 

different types ball bearing conditions. 

4.2 Quadratic discriminant classifier  

  QDA is a statistical-based classifier whose 

function based on normally distributed measurements. The 

covariance of each of the different ball bearing conditions 

need not be identical. It calculates the likelihood ratio, and 

make use of the quadratic decision surface to classify the 

different ball bearing conditions.  

4.3Decision tree 

       Decision tree is a classifier in the form of a tree 

structure. It specifies test on single attribute. Leaf node 

denotes the target attribute value. This classifier finds the 

output responses based on a sequence of decisions. The 

maximum number split allowed in this decision tree 

classifier is training data -1 with minimum leaf size and 

maximum parent sixe as 10 respectively.  

4.3 K-nearest neighbour classifier  

 This classifier is based on unsupervised 

learning for each class in the dataset. Initially, it finds the 

number of neighbouring points in the training set nearest to 

new point. It also finds the neighbor point response values. 

Then it assign the new target based on largest posterior 

probability of neighbourhood response points. 

4.4 Multi SVM Classifier 

SVM is initially designed for binary classification. 

The learning is based on matrix pseudo inversion by 

diagonalization and the run time depends only on the 

training data size. In this work, MSVM is used in two 

approaches. In the first approach, one class is compared with 

another class. So, this type of MSVM needs a set of all 

possible pair wise classifiers. It evaluates and assigns class to 

predictor variable. The maximum number of label given to 

the predictor is finally assigned to the target class. In the 

second approach, it distinguishes all classes at a time and 

label is assigned using posterior values. In both approaches, 

Gaussian, RBF, polynomial and sigmoidal kernel function 

are used, as measured vibration signal data contains highly 

non linear data.  

5. Results and discussions 

The classification of different types of ball bearing 

conditions like normal, outer race fault and inner race faults 

in IM are recognized by using LDC, QDA, Decision Tree, 

K-nearest neighbor classifiers and MSVM with two 



approaches.  For these classifiers, totally 90 samples with 30 

samples for each ball bearing condition are taken. Out of 

these 90 samples, 60 samples are used for training and 30 

samples are used for prediction. 

The validation results of classifiers except MSVM 

are tabulated in Table 3. In these, LDC yields high 

recognition rate for the ball bearing conditions of IM when 

using Roberts filter. The higher recognition rate achieved is 

86.67 by QDA for outer race fault in ball bearing but low 

recognition in other two ball bearing condition. Eventhough 

other classifiers yields high recognition for certain ball 

bearing conditions, LDC classifier has the capability to 

recognize all type of faults. Hence, the recognition rate of 

LDC is compared with MSVM based classifiers for 

subsequent comparison. 

Table 3 Recognition rate of different classifiers  

Ball Bearing 

Conditions 

LDC QDA Decision 

Tree 

K-

nearest 

Neighbor 

Classifier 

Sobel filter 

Normal 83.33 43.33 26.67 50.00 

Outer race 

fault 

46.67 83.33 43.33 43.33 

Inner race fault 36.67 46.67 83.33 46.67 

Prewitt filter 

Normal 56.67 36.67 23.33 26.67 

Outer race 

fault 

30.00 46.67 46.67 46.67 

Inner race fault 56.67 83.33 73.33 43.33 

Roberts filter 

Normal 66.67 46.67 50.00 36.67 

Outer race 

fault 

66.67 46.67 48.00 56.67 

Inner race fault 70.00 76.67 46.67 26.67 

Canny filter 

Normal 56.67 26.67 26.67 26.67 

Outer race 

fault 

43.33 86.67 56.67 56.67 

Inner race fault 36.67 16.67 46.67 83.33 

5.1 MSVM classifier 

The fractal features extracted by box counting method is fed 

as input to MSVM classifier. In the first approach, one class 

is compared with other class and it continues with all 

possible pairs of classes. In this approach, all fractal features 

are taken into account. In the second approach, MSVM 

classifier works as one class versus all classes. Only two 

features are fed as input to the classifier. The features are 

selected in such a way that all possible two combinations of 

features are used to train the MSVM model. Predictive 

performances of each combination are compared and the best 

combination is used to train the MSVM. 

 
Fig. 4. Scatter plot of fractal features 



For simplicity, all 2 dimensional combinations of fractal 

features extracted using Robert filter is alone shown in 

Figure 4. From figure, it is viewed that fractal 1 and fractal 4 

combination scatter well which discriminates the ball 

bearing fault conditions clearly. Fractal 1 and fractal 4 are 

the fractal dimension and lacunarity respectively. These two 

fractal features are fed as input to MSVM for one versus all 

approach. The fault classification of ball bearing in IM along 

with posterior is shown in Figure 5. The recognition rate of 

MSVM of two approaches is listed in Table 4. 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 5. Induction motor ball bearing fault classification 

(a) gaussian kernel (b) RBF kernel (c) polynomial kernel (d) sigmoidal kernel 

Table 4  Recognition rate of ball bearing fault condition by proposed MSVM classifier  
SVM ( first approach) 

Kernel Types Gaussian  RBF Polynomial Sigmoidal  

Filter Sobel Prewitt Roberts Canny Sobel Prewitt Roberts Canny Sobel Prewitt Roberts Canny Sobel Prewitt Robert

s 

Canny 

Normal 73.33 76.67 63.33  76.67 76.67 76.67 86.67 75  66.67 76.67  70.00 70.00 73.33 66.67 66.67 70.00 

Inner race fault 66.67 63.33 76.67 66.67 70.00 73.33 70.00 66.67 60.00 73.33 66.67 73.33 66.67 46.67  46.67 46.67 

Outer race fault 70.00 86.67 66.67  70.00 66.67 73.33 73.33 80.00 66.67 66.61  73.33 46.67 70.00 66.67 73.33 66.67 

SVM ( second approach) 

Kernel Types Gaussian  RBF Polynomial Sigmoidal  

Normal 76.67 76.67 86.67 70.00 93.33 90.00 96.67 73.33 73.33 66.67 73.33 73.33 80.00 66.67 80.00 66.67 

Inner race fault 73.33 80.00 80.00 66.67 80.00 86.67 80.00 66.67 93.33 80.00 66.67 80.00 76.67 76.67 76.67 76.67 

Outer race fault 70.00 76.67 76.67 76.67 66.67 66.67 76.37 76.67 80.00 76.67 73.33 66.67 93.33 66.67 66.67 66.67 



MSVM model trained with two fractals features 

performs better than the MSVM trained using four features 

which are shown in table 8. It is clear that number of features 

taken should be less than the number of classes to be 

identified. As there is three set of ball bearing conditions in 

IM, MSVM can have the number of input fractal features 

less than two. MSVM using one against all with RBF kernel, 

works well for ball bearing fault classification as it yields 

higher recognition compared to other classifier for fractal 

feature extracted through Roberts filter. 

6. CONCLUSION 

In this work, Multi Support Vector Machine based ball 

bearing fault classification is carried out using fractal 

features which are extracted through box counting method. 

In box counting method, four types of filters namely sobel, 

prewitt, roberts and canny are employed for edge detection. 

The performance evaluation of the MSVM with two 

different approaches namely one versus one and one versus 

all is analyzed using the fractal features extracted from 

vibration signal of induction motor. In both the approaches, 

four different kernels namely Gaussian, RBF, polynomial 

and sigmoidal functions are used. RBF kernel based MSVM 

with one versus all approach using roberts filter in box 

counting method provides outer performance compared to 

other methods due to its gain flexibility and good out-of-

sample generalization. The future research will be focused 

towards multiple faults in ball bearing recognition. This 

method addressed the challenge issues related with ball 

bearing fault classification in induction motor.   
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