

A NEW APPROACH TO DESIGN AN

ARITHMETIC LOGIC UNIT BASED ON

ANCIENT VEDIC MATHEMATICS

 K.BHARATHA BABU1, REEBA KORAH2, A.SWARNALATHA3

1Department of ECE, Research Scholar, Anna University, Chennai, Tamil Nadu, India,

2Alliance College of Engineering and Design, Alliance University, Bangalore-562106, Karnataka, India

3St. Joseph’s College of Engineering, Chennai-600119, Tamil Nadu, India

1kbharathababu@gmail.com, 2reeba26in@gmail.com,3swarnalatha7@gmail.com

Abstract—ALU is the cardinal functional unit in

digital signal processor and embedded system

devices which perform complex arithmetic and

logical functions. In this paper we propose an

ALU architecture (Vedic coprocessor) which is an

integral unit of arithmetic and logical unit such as

multiplication, division, square, cube, square root

and cube root units. Each and every unit has an

architecture based on unique Vedic math sutras.

This proposed ALU architecture overcomes the

existing drawbacks such as high delay, irregular

structure of combinational circuits and high

power dissipation. Vedic ALU is designed and

simulated in XILINX ISE simulator and

implemented using Spartan 3 FPGA. The

proposed ALU is equivalent to Vedic coprocessor

which increases the efficiency of multiprocessor

configuration system design.

Keywords: Vedic mathematics, Nikhilam sutra,

Urdhva Tiryakbhyam, Yavadunam, Anurupya,

ALU, Multiplier.

I. INTRODUCTION

Always challenges are grown in the

direction of handling complex arithmetic and logical

functions in DSP Processor and embedded processor.

Multiprocessor configuration technique helps in

integration of number of processor cores into one

chip. Complexity is reduced as main processor works

with coprocessor. Coprocessors are the processors

that are designed to work on different task like

numeric computation, signal processing and graphics.

Performance of the ALU greatly depends on the

multiplier. Existing multiplier techniques such as

redundant complex number system [RCNS],

CORDIC and bit serial multiplication suffer from the

problem of long latency, large rearranging of pre/post

processing and the necessity to have regular

structure. To overcome these disadvantages Vedic

mathematics is used. Based on various Vedic

aphorisms’ various arithmetic modules such as

multiplication, division square, cube square root, and

cube root modules are designed and integrated into

Vedic ALU.

II. PROPOSED TECHNIQUE

A.Nikhilam Navata Charanam Dashatah

An Aphorism which simply means: “all from 9 and

the last from 10”. This aphorism works efficiently for

multiplication of numbers, which are nearer to bases

of 10, 100, 1000 i.e. increased powers of 10. The

procedure of multiplication using the Nikhilam

involves minimum mental manual calculations. This

in turn will lead to reduced number of steps in

computation, hence reducing the space and saving

more time for computation. The numbers taken can

be either less or more than the base considered. The

mathematical derivation of the algorithm is given

below.

Consider two n-bit numbers x and y to be multiplied.
Then their complements can be represented as[5]

x1= 10
n
 – x and y1 = 10

n
 – y.

The product of the two numbers can be given as

p = (x, y).

mailto:1kbharathababu@gmail.com
mailto:2reeba26in@gmail.com

Now a factor 10

2n
 +10

n
 (x + y) is added and

subtracted on the right hand side of the product,
which is mathematically expressed as shown below.

p = xy + 10
2n

 +10
n
 (x + y) – 10

2n
 – 10

n
(x +

y) On simplifying we get,

p = {10
n
 (x + y) – 10

2n
 + {10

2n
 -10

n
 (x + y) +

xy} = 10
n
 {(x + y) – 10

n
} + {(10

n
 – x) (10

n
 –

y)} =10
n
 {x – y1} + {x1 y1}

= 10
n
 {y – x1} + {x1 y1}

From the above equation we can derive the left-hand

side of the product as {x – y1} or {y– x1} and the

right hand side as (x1.y1).The basic operations

involved in the algorithm for a given set of numbers

are given below. Consider 88 x 98.

Here the Nearest Base = 100

88 (100 – 88)

98 (100 - 98)

Column 1 column 2

88 12

98 2

86 24

2 Digits 2 Digits

B. Vedic Squaring

Duplex D property of Urdhva Triyagbhyam is used to

calculate the square of the number. In the Duplex, we

take twice the product of the outermost pair and so on

till no pairs are left [10].When there are odd no’s of

bits in the original sequence, there is one bit left by

itself in the middle and this enters as its square.

Algorithm for 4*4 bit square using Urdhva
Triyagbhyam D-Duplex [4].

Y3 Y2 Y1 Y0 Multiplicand

Y3 Y2 Y1 Y0 Multiplier

H G F E D C B A

P7 P6 P5 P4 P3 P2 P1 P0 Product

Parallel Computation

1. D=Y0*Y0=A

2. D=2*Y1*Y0=B

3. D=2*Y2*Y0+Y1*Y1=C

4. D=2*Y3*Y0+2*Y2*Y1=D

5. D=2*Y3*Y1+Y2*Y2=E

6. D=2*Y3*Y2=F

7. D=Y3*Y3=G

Squaring algorithm and the corresponding
architecture was implemented with the aid of
“Yavadunam Sutra”.

Mathematical formulation of Yavadunam Sutra

Y
2
=2

n
(Y-2’s complement of Y) + (2’s complement

of Y)
2

C. Vedic Cube

Anurupya sutra of Vedic mathematics is used to find
the cube of the number. Aphorism states that “If you

start with the cube of the first digit and take the next

three numbers (in the top row) in a Geometrical
Proportion (in the ratio of the original digits

Fig 1: Hardware Flow Diagram for Nikhilam sutra

themselves) then you will find that the 4th figure (on
the right end) is just the cube of the second digit”.

If a and b are two digits then according to Anurupya
Sutra[1],

a
3
 a

2
b ab

2
 b

3

2a
2
b 2ab

2

a
3
 + 3a

2
b + 3ab

2
 + b

3
 = (a + b)

3

This sutra has been utilized in this work to find the

cube of a number. The number M of N bits having its

cube to be calculated is divided in two partitions of

N/2 bits, say a and b, and then the Anurupya Sutra is

applied to find the cube of the number. In the above

algebraic explanation of the Anurupya Sutra, we have

seen that a3 and b3 are to be calculated in the final

computation of (a+b)
3
.

The intermediate a3 and b3 can be calculated by
recursively applying Anurupya sutra. A few

illustrations of working of Anurupya sutra are given

below.

(15)
3
 = 1 5 25 125

10 50

3375

D. Vedic Square Root

The method suits for only perfect squares. Finding

square root is quiet difficult. The only method known

to us till now is to find the factors of a number group

the factors taking two at a time and take out one

number from a group of two.

Eg: 64 = 2*2*2*2 *2*2

Taking out => 2*2*2=8

Therefore, √64 = 8.

A better and efficient way in solving the problem is
use of Vedic maths which is described as follows:-

Squaring of numbers ending in 5 uses a sutra called
‘Ekadhikena Purvena’ [2]

The Sutra (formula) Ekādhikena Pūrvena means: “By
one more than the previous one”.

Consider 45
2

45 = (40 + 5)
2
, It is of the form (ax+b)

2
 for a = 4,

x=10 and b = 5. Answer =a (a+1) / 25

That is, 4 (4+1) / 25 = 4 * 5 / 25 = 2025.

The algorithm for working with perfect squares is
given below:

If the number is a perfect square, then we can know

what the ending digit of the answer will be by

looking at the ending digit of the question.

If the number ends in a:

0 -> then the ending digit is a 0.

1 -> then the ending digit is 1 or 9.

4 -> then the ending digit is 2 or 8.

5 -> then the ending digit is a 5.

6 -> then the ending digit is 4 or 6.

9 -> then the ending digit is 3 or 7.

After finding the last digit (or possibility between

two digits) chop off the last two digits and focus on

the remaining digits.

Then find out if the answer is in the upper-half of the

range (i.e. ends in 5, 6, 7, 8, or 9) or if the answer is

in the lower-half of the range (i.e. ends in 0, 1, 2, 3,

or 4) by squaring the middle number (the number in

the range that ends in 5).

Steps to find the square root of 5329:

We know the last number must be a 3 or 7.

Chopping off the last two numbers we need to focus
on the remaining numbers or 53.

We know that 7
2
 = 49 and 8

2
 = 64 so since 53 is

between these two numbers; the answer is between
70 and 80.Squaring 75 we get 5625. Since the
original number is lower than this, we know the
answer is in the lower-half.

The answer is 73.

E. Cube Root Using Vedic Mathematics

Similar to square root, cube root can be done for

specific numbers. Finding cube root of a number is

one of the very difficult task one can encounter with.

The only method known to us till now is to find the

factors of a number, group the factors taking three at

a time and take out one number from a group of

three[1].

Eg: 1728 = 2*2*2*2*2*2*3*3*3*

Taking out => 2*2*3=12Therefore, ³√1728 = 12.

The working method and the name of the sutra is
almost the same. Both the square root and cube root

can be described as magical method.

The sutra for cube root is ‘Vargamula’.

The method for working with perfect cubes is give
below [2]:

If the number is a perfect cube, then we can know

what the ending digit of the answer will be by
looking at the ending digit of the question.

If the number ends in a:

0 -> then the ending digit is a 0

1 -> then the ending digit is 1.

2 -> then the ending digit is 8.

3 -> then the ending digit is 7.

4 -> then the ending digit is 4.

5 -> then the ending digit is 5.

6 -> then the ending digit is 6.

7 -> then the ending digit is 3.

8 -> then the ending digit is 2.

9 -> then the ending digit is 9.

Steps to find the cube root of 9261:

After finding the last digit, chop off the last three
digits and focus on the remaining digits.

Ensure that the remaining numbers is less than or
equal to the nearest cube of a number.

We know the last number must be a 1.

Chopping off the last three numbers, we need to
focus on the remaining numbers or 9.

The nearest cube is ‘8’; we know that 2
3
= 8.

So the answer is 21.

F. Vedic Divider

In this paper we report only NND formula to

implement the division algorithm and its architecture.

“Nikhilam Navatascaramam Dasatah” (NND) is a

Sanskrit term indicating “all from 9 and last from

10”, formula have been mathematically described for

the [10] proposed divider design. Mathematical

description of this sutra can be formulated as:

Consider two numbers A and B as Dividend and

Divisor respectively.

Illustration of NND Sutra

9819 ÷ 2 0 1 3 7

0181 0 2 1 6 2

 2 0 4 9 9

Fig 2: Division using “Nikhilam Navatascaramam Dasatah”

The Chart can be implemented as follows:

Step 1: Assuming Dividend is equal to 20137 and

Divisor is equals to 9819. Considering base of

operation is equals to 10000. Subtract the divisor
from base of operation i.e. equals to 0181.

Step 2: Take the first digit (MSD) of the dividend,

put down below the vertical line; here MSD is equal

to 2.

Step 3: Multiply the subtraction results with MSD,
put down below the dividend. Result is equal to
(0181×2=02162). (Here individual digit
multiplication has been performed).

Step 4: Perform the addition of the multiplication
result with dividend digits. Thus from the above chart
our quotient is equal to 2 and remainder is equals to
499. Thus in this division process (by NND formula),

we perform only small digit multiplication, without

any subtraction and division, quotient and remainder

is obtained.

III.HARDWARE IMPLEMENTATION OF ALU

The proposed Arithmetic and logic module has first

been split into six smaller modules that is

1.Multiplier 2. Squarer 3.Cube 4.Square root 5.Cube

root 6.Division as a whole. These modules have been

made using Verilog HDL[3].

Arithmetic Logic Unit can be considered to be the
heart of a CPU, as it handles all the mathematical and

logical calculations that are needed to be carried out.
Again there may be different modules for handling
Arithmetic and Logic functions. In this work, an

arithmetic unit has been made using Vedic

mathematics algorithms and performs Multiplication,

Square, Cube, Square root, Cube root, Division

operation as well as addition and subtraction. For

selection of base, RSU and Exponent determinant

have been used. The control signals tell the arithmetic

module, when to perform and which operations are

provided by the control unit. The individual modules

of the Arithmetic unit are Multiplier, Squaring,

cubing, square root, cube root and divider blocks.

The multiplier block performs multiplication, based

on two algorithms namely Urdhva Triyagbhyam and

Nikhilam Navatascaramam Dasatach [8].

A B
 8 1

8 Multiplier

 1

 Square

 2
 Cube

Output

8
M

 Square Root U

 8 X

 Cube Root

 8
 Divider

S2 S1 S0

In Urdhva Tiryagbhyam, multiplication of two 8 bit

numbers is performed. Though this sutra holds good

for multiplication of binary numbers, the drawback is

that when the numbers are large, this algorithm is

difficult. To overcome this, Nikhilam sutra is used.

Although it is applicable to all cases of

multiplication, it is more efficient when numbers

involved are large.

The Squarer block is used to perform the squaring

operation. When the input is of 8 bit, the output will
be 16 bit. The sutra used for this block is
Yavadunam. For surplus, Yavadadhikam
Tavadahikikritya Vargancha Yojayet and for
deficiency, Yavadhunam Tavadahikikritya
Vargancha Yojayet is used.

The Cube block is used to perform the cubing

operation. When input is of 8 bit, the output will be

32 bit. The algorithm used for this block is Anurupya.

Both squaring and cubing block holds good for all

numbers.

The Square root block is used to perform the square
root operation. When input is of 16 bit, the output

will be 8 bit. The algorithm used for this block is

Vargamula.

The Cube root block is used to perform the cube root

operation. When input is of 32 bit, the output will be

8 bit. Both square root and cube root block holds

good for perfect squares and cubes i.e applicable only

for specific numbers.

The Divider block is used to perform division

operation. The algorithm used for this block is

Nikhilam Navatascaramam Dasatah. When the input

is of two 8 bit numbers a(dividend) and b(divisor),

the output will be single 8 bit number p(quotient).

The Arithmetic module designed in this work, makes

use of 6 components, that are, Multiplier, Squarer,

Cube, Square root, Cube root, Division. Here the

inputs are Data A and Data B, which are 8 bits wide.

The arithmetic unit are made using Vedic

Mathematics sutras. The control signals which guide

the Arithmetic unit to perform a particular operation
such as Addition, Subtraction, Multiplication, Square,

Cube, Square root, Cube root, Division operation are

s0, s1 and s2, which are provided by the control

circuit. The operations are performed only when the

clock is set to ‘1’.

Fig 3: ALU Integration

S2 S1 S0 Operations Performed

0 0 0 Multiplication

0 0 1 Square

0 1 0 Cube

0 1 1 Square root

1 0 0 Cube root

1 0 1 Division

1 1 0 No operation

1 1 1 No operation

Table 1: Operation by mux

A. Hardware Implementation of Multiplier

The architecture can be decomposed into three main

subsections, they are:

i) Radix Selection Unit (RSU)

(ii) Exponent Determinant (ED)

(iii) Array multiplier

Radix Selection Unit (RSU)

The RSU is required to select the proper radices
corresponding to the input numbers. If the selected
radix is nearer to the given number then the
multiplication of the residual parts (Z1*Z2) can be
easier to compute. The Subtractor blocks are required
to extract the residual parts (Z1 and Z2). The second
subsection (ED) is used to extract the power (k1 and
k2) of the radix and it is followed by a subtractor to
calculate the value of (k1-k2).The third subsection
array multiplier is used to calculate the product (Zl
*Z2). The output of the subtractor (kl-k2) and Z2 are
fed to the shifter block to calculate the value of Z2*

2
k

1
-k

2.The first adder-subtractor block has been used

to calculate the value of X ± Z2 x 2
k

1
-k

2• The output

of the first adder-subtractor and the output of the
second Exponent Determinant (k2) are fed to the

second shifter block to compute the value of 2
k

2 * (X
± Z2 * 2

k1-k2
). The output of the multiplier (Z1 x Z2)

and the output of the second shifter (2
k

2* (X ±

Z2*2
k

1
-k

2))are fed to the second adder/subtractor block

to compute the value of (2
k

2 * (X ± Z2 * 2
k

1
-k

2)) ± ZlZ2.

Mathematical expression for RSU

Consider an 'n' bit binary number X, and it can be
represented [6]

X =∑i=0
n-1

 Xi2
i

where Xi belongs to {0,1}.Then

the values of X must lie in the range 2
n-1

≤X

<2
n
.Consider the mean of the range equals to A.

A= (2
n-1

+2
n
)/2

A= 2
n-2

 x 3

If X >A Then radix = 2
n

If X ≤ A Then radix = 2
n-1

X(n bit)

n+1 bit
Exponent

 represen
Determinant tation of

‘1’

Cin= 1
Adder Shifter

Shifter Average
Determinant

1 0

Data Magnitude

Comparator Selector

Selected Radix

Fig 4: RSU block diagram

N
th

 bit from input X is fed to the ED block. The

maximum power of X is extracted at the output which is
again fed to shifter and the adder block. The second
input to the shifter is the (n+1) bit representation of
decimal '1 '.If the maximum power of X from the ED

unit is (n-1) then the output of the shifter is2
(n-1)

. The

adder unit is needed to increment the value of the
maximum power of X by '1'. The second shifter is

needed to generate the value of 2
n
.Here n is the

incremented value taken from the adder block. The
Mean Determinant unit is required to compute the mean

of (Z
n-l

 +Z
n
). The Comparator compares the actual input

with the mean value of (Z
n-l

+ Zn

). If the input is greater than the mean then 2
n
 is

selected as the required radix. If the input is less than

the mean then 2
n-1

 is selected as the radix. The select
input to the multiplexer block is taken from the
output of the comparator.

Exponent Determinant

The hardware implementation of the exponent

determinant is shown in fig 5. The integer part or

exponent of the number from the binary fixed point

number can be obtained by the maximum power of

the radix. For the nonzero input, shifting operation is

executed using parallel in parallel out (PIPO) shift

registers. The number of select lines of the PIPO

shifter is chosen as per the binary representation of

the number (N-1)10. 'Shift' pin is assigned in PIPO

shifter to check whether the number is to be shifted

or not (to initialize the operation 'Shift' pin is

initialized to low). A decrementer has been integrated

in this architecture to follow the maximum power of

the radix. A sequential searching procedure has been

implemented here to search the first 'I' starting from

the MSB side by using shifting technique.

For an N bit number, the value (N-I)10 is fed to the

input of decrementer. The decrementer is

decremented based on a control signal which is

generated by the searched result. If the searched bit is

'0' then the control signal becomes low. The

decrementer starts decrementing the input value

(Here the decrementer is operating in active low

logic). The searched bit is used as a controller of the

decrementer. When the searched bit is 'I' then the

control signal becomes high and the decrementer

stops further decrementing and shifter also stops

shifting operation [6].

 X(input number)

Gnd Shift
 Parallel in Parallel out shifter

S0

S1
Shifted

 Don’t care

 (N-1)=3where

 N=4Value(maximu

 m value)

 Decrementer

Exponent

Fig 5: Block diagram of exponent determinant

B. Architecture of Square using Yavadunam

The architecture of squaring algorithm using
“Yavadunam Sutra” is shown in fig 6.. The basic
building blocks of the architecture are (i) RSU, (ii)

Subtractor, (iii) Add-Sub unit and (iv) Duplex
squaring architecture.

X (INPUT NUMBER)

Radix Selection Unit

 Radix

Exponent
Subtractor

 Control

 Add/Sub Unit

Squaring

Left Shifter (By Duplex)

Result

Fig 6: Architecture of squaring algorithm using Yavadunam Sutra

C. Architecture Implementation Divider

The architecture for division using ‘Nikhilam’ Sutra

has been described in Fig. 3. The architecture

consists of three major sub-segments :(i)

Complement circuitry, (ii) Adder and (iii)

Incrementer. The ‘n’ bit input from divisor is fed to

the complement circuitry. Complement methodology

that has been used here, is the two’s complement

method.

B A

Complement

Start With ‘0’

Incrementer

AND Array Carry

Remainder
Quotient

Fig 7: Internal architecture of divider

The result of complement is fed to the adder,

the ‘Carry’ signal generated from the adder is fed to

the incrementer as well as AND array. The ‘Carry’

signal indicates the addition result to be fed to the

adder again or not. The incrementer which computes

the quotient is controlled by the ‘Carry’ signal. If the

‘Carry’ signal is ‘1’, then the output from the adder is

again fed to the adder and the operation is repeated

again until the result of the incrementer is either n/2

bit or n/2+1 bit. The output from the adder is the

actual remainder and the result of the incrementer is

the quotient.
In the same way architecture of cube is

implemented based on the square architecture.

Similarly square root and cube root is also

implemented.

IV. PERFORMANCE & DISCUSSION

A. Speed and Delay

Vedic multiplier is faster than conventional

multiplier. As the number of bits increases from 8x8

to 16x16, the timing delay is greatly reduced for

Vedic multiplier as compared to other multipliers.

Vedic multiplier has the greatest advantage as

compared to other multipliers over gate delays and

regularity of structures. Memory usage of Vedic

multiplier is greatly reduced compared to array

multiplier

 2 Bit 4 Bit 8 Bit

PAR

A
R

R
AY

V
E

DIC

A
R

R

A
Y

V
E

DIC

A
R

R

A
Y

V
E

D
IC

AME

TERS

Speed 4 4 4 4 4 4

Min.

12.4 11.7 24.7

I/P 9.3 ns 4.1 ns 21.3 ns
ns ns ns

arrival

Max.

7.16 ns

7.16 7.16 7.16 7.16

7.16 ns
O/P ns ns ns ns

CPU
2.66/ 2.44/ 2.78/ 3.27/ 4.95/ 10.38/

time
2.80s 2.56 s 2.91s 3.39 s 5.22s 10.69 s

Elaps 2.00/ 2.00/ 3.00/ 3.00/ 5.00/ 5.00/
ed

3.00 s 3.00 s 3.00 s 4.00 s 5.00s 5.00 s time

memo

141540 14051 14154 14154 24833 145916
ry

KB 6 KB 0 KB 0 KB 2 KB KB
usage

Table 2.Comparison of Vedic with Array Multiplier

B. LUT Comparison

No No of 4 i/p LUTs in No of 4 i/p LUTs

of Conventional in Vedic Squaring

bits Multiplier Unit

4 32 6

8 186 101

16 880 294

Table 3: Comparison of LUTs

C. Delay

Delay in Vedic squarer for 8 x 8 bit number is 34 ns

while the delays in conventional multiplier are 45 ns.

Thus the squaring unit using Urdhva shows the

highest speed among other squaring techniques. The

comparison of the delay is shown below:

No of bits Delay in Delay in Vedic

 Conventional Squaring

 Multiplier Unit(ns)

4 8.154 4.993

8 45.718 34.947

16 56.657 43.392

 Table 4: Comparison of delay

D.Power

0.61

0.6 0.6

0.59

0.58 0.58 0.58

0.57

0.56 0.56

0.55

0.54

2bit array 4bit array2bit proposed 4bit proposed

Power

Power

Fig 8: Power comparison graph between array and proposed

multiplier

Power consumed by the Vedic multiplier is 0.058W

whereas power consumed by array multiplier is

0.060W.

E.Synthesis Report

Device Utilization Summary:

Multiplication -Urdhva Tiryakbhyam

Selected Device : 3s400tq144-4

Number of Slices : 99 out of 3584 2%

Number of 4 input LUTs: : 174 out of 7168 2%

Number of IOs : 33

Number of bonded IOBs : 32 out of 97 32%

Multiplication –Nikhilam Navatascaramam Dasatah

Selected Device : 3s400tq144-4

Number of Slices : 271 out of 3584 7%

Number of 4 input LUTs: : 477 out of 7168 6%

Number of IOs : 33

Number of bonded IOBs : 32 out of 97 32%

IOB Flip Flops : 16

Number of MULT18X18s: : 8 out of 16 50%

Square-Yavadunam

Selected Device : 3s400tq144-4

Number of Slices : 65 out of 3584 1%

Number of 4 input LUTs: : 119 out of 7168 1%

Number of IOs : 49

Number of bonded IOBs : 48 out of 97 49%

Number of MULT18X18s: : 3 out of 16 18%

 Cube-Anurupya

Selected Device : 3s400tq144-4

Number of Slices : 4145 out of 3584 115%

Number of 4 input LUTs: : 7546 out of 7168 105%

Number of IOs : 33

Number of bonded IOBs : 32 out of 97 32%

Number of MULT18X18s: : 12 out of 16 75%

V. CONCLUSION

The proposed ALU is proved to be efficient than

conventional ALU in terms of area of consumption

and delay. Each proposed module uses different

Sutras. The delay in squarer block is 34ns which is

less than the delay caused by the conventional

techniques. The memory usage of Vedic multiplier is

145916 KB which is smaller than 248332 KB of

Array multiplier. From RTL schematic we can

observe that regular structure is obtained and also it

makes routing so easy. Integrated ALU leads to

Vedic coprocessor which increases the efficiency of

multiprocessor configuration system design.

The future scope of this work is to check

whether Vedic maths is applicable for other

operations like trigonometric functions, logarithmic

function and floating point functions etc., & to

calculate delay, power when the bit size is increased

REFERENCES

[1]. Swami Bharati Krishna Tirthaji , Vedic Mathematics.

Delhi: Motilal Banarsidass Publishers, 1965.

[2]. Vedic Mathematics [Online]. Available:
www.hinduism.co.za/vedic.htm. Accessed November7.

[3]. M. Ramalatha, K. Deena Dayalan, P. Dharani, “High
Speed Energy Efficient ALU Design using Vedic

Multiplication Techniques” ACTEA, IEEE pp 600-603

[4]. Kabiraj Sethi, Rutuparna Panda”An Improved squaring

circuit for Binary Numbers”International Journal of

Advanced Computer Science and Application”

Vol3.No2, 2012

[5]. P.Saha, A.Banerjee, A.Dandapat, P.Bhattacharyya”Vedic
Mathematics Based 32 Bit Multiplier Design for High
Speed

[6]. Low Power Processors”International Journal on Smart

Sensing and Intelligent Systems Vol.4, NO.2,
JUNE2011

[7]. P. Sreenivasa Rao, Mr.C.Md.Aslam “Design Of

Complex Multiplier with High Speed ASIC using
Vedic Mathematics” International Journal Of

Engineering Research And Technology (Ijert) Issn:

2278-0181 Vol.1 Issue 6, August-2012

[8]. S.S.Kerur, Prakash marchi, Jayashree CN, Harish M
Kittur and Girish V.A. “Implementation Of Vedic

Multiplier For Digital Signal Processing” International

Conference On Vlsi, Communication And
Instrumentation (ICVCI),2011 Proceeding Published

By International Journal Of Computer

Application(IJCA)

[9]. Mr.Abhishekgupta, Mr.Utsavmalviya, Prof.Vinod
Kapse”Novel Approach to Design High Speed ALU
Based On Ancient Vedic Multiplication Technique”
International Journal Of Modern Engineering Research
Vol.2 Issue.4, July-August 2012 Pp-2695-2698

[10]. M.E.Paramasivam, Dr.R.S.Sabeenian,”An Efficient Bit
Reduction Binary Multiplication Algorithm using

Vedic Methods” 2010 IEEE 2nd International Advance

Computing Conference.

[11]. Prabir Saha*, Arindam Banerjee**, Partha
Bhattacharyya*, Anup Dandapat,” Vedic Divider:
Novel Architecture (ASIC) for High Speed VLSI
Applications”2011Internaional symposium on
electronic system design.

[12]. Bathija, R.K., Meena, R.S., Sarkar, S., Sahu, Rajesh. :

“Low Power High speed 16X16 bit Multiplier using
Vedic Mathematics,” International Journal of Computer
Applications(IJCA), Vol. 59 -Number 6,
December2012

[13]. Eganathan Sriskandarajah, “Secrets of Ancient Maths:

Vedic Mathematics”, Journal of Indic Studies
Foundation, California, pages 15 and 16

[14]. Gupta, A., Malviya, U, Kapse, V.: “Design of Speed,
Energy,andpower efficient Reversible logic based ALU
for digital processors,” IEEE Proc. NUiCONE,
Ahmedabad, 6-8 Dec 2012, pp. 1-6.

[15]. Hanumantharaju,M.C., Jayalaxmi, H., Renuka R.K., and
Ravishankar, M.: “A High-Speed Block Convolution
Using Ancient Indian Vedic Mathematics, ” IEEE
International Conference on Computational Intelligence
and Multimedia Applications,Sivakasi, Tamil Nadu, 13-
15 Dec 2007, pp.169-173.

[16]. Huddar, S.R., Rupanagudi, S.R., M., Mohan, S.: “Novel
high-speedVedic mathematics multiplier using
compressors,” IEEE International multiConference,
2013, pp.465-469

[17]. Madhu Latha B, B. Nageswar Rao, “Design and
Implementation of High-Speed 8-Bit Vedic Multiplier
on FPGA” International Journal of Advanced Research
in Electrical, Electronics and instrumentation
engineering, Vol. 3, Issue 8, August 2014.

[18]. Murali A, G Vijaya Padma, T Saritha, “An Optimized
Implementation of Vedic Multiplier Using Barrel
Shifter in FPGA Technology”, Journal of Innovative
Engineering 2014, 2(2).

[19]. Nicholas A.P, K.R Williams, J. Pickles, “Application of
Urdhava Sutra”, Spiritual Study Group, Roorkee
(India), 1984

[20]. Tiwari, H.D., Gankhuyag, G., Kim, M.,and Cho, B.:
“Multiplier design based on ancient Indian Vedic
Mathematics,” IEEE Proc. International SoC Design
Conference, ISOCC, Busan, 2008, pp. II-65 - II-68.

[21]. Toni J.Billore, D.R.Rotake, “FPGA implementation of
high speed 8-bit Vedic Multiplier using Fastadders”
Journal of VLSI and Signal Processing Volume 4, Issue
3, Ver. II (May- Jun. 2014), PP 54-59 e-ISSN: 2319 –
4200, p-ISSN No. : 2319 – 4197

[22]. Wallace, C.S., “A suggestion for a fast multiplier,”
IEEE Trans. Elec. Comput.,vol. EC- 13, no. 1, pp. 14–
17, Feb. 1964.

http://www.hinduism.co.za/vedic.htm.%20Accessed%20November7

