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Abstract: This paper presents a scheme for predicting coherent 

generator groupings that may result following a disturbance that 

leads to transient instability. The proposed scheme uses rotor 

speed deviations of the individual generators in the power 

system as input data, and a multilayer perceptron neural 

network as decision making tool. The speed deviations are 

extracted 5 cycles after the tripping of a line or bus following a 

disturbance. The proposed scheme is able to predict coherent 

generator groups before they are formed. The prediction 

accuracy of the scheme for 114 fault cases was found to be 

91.22% 
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1. Introduction 

Most power systems are being operated with reduced 

stability margins. This is due to the huge demand for 

electric power which is fuelled by industrialization, 

modernization, and population growth. Limited installed 

generation capacity and unavailability or high cost of 

mechanical energy sources to drive the prime movers of 

generators have also contributed to the problem of 

operating power systems close to their stability limits. 

The stability of such systems is endangered when 

subjected to large disturbances such as the tripping of 

transmission lines due to faults. Instability may lead to 

cascading system failures, which could cause equipment 

damage, pose safety hazards to personnel, contribute to 

cascading outages, and shutdown of large areas of or 

entire power systems [1, 2]. 

Whenever transient stability analysis of a system 

indicates that the system is approaching a catastrophic 

failure, control actions need to be taken in order to limit 

the extent of damage of the failure. One of such control 

actions is to separate the system into smaller islands at 

slightly reduced capacity. System islanding is often 

considered as one of the final stage of power system 

defense plans. The goal is to preserve stable areas of the 

faulted power system. Islanding also plays an important 

role in the power system restoration phase as it can make 

the power system restoration less complex and reduce the 

overall restoration time. The basis for islanding is not 

standard but rather depends on the nature of the utility. 

Even though the formation of islands is dominated by 

geographical proximity of the synchronous generators to 

maintain generation-load balance, there are some factors 

which can assist in designing a better islanding scheme. 

These factors include the type and location of the fault, 

and the dynamic performance of every island in the 

system against the fault [3, 4]. 

Research has gone into the development of controlled 

islanding schemes [3 – 8].  One of the important issues for 

controlled islanding is the determination of the separation 

interfaces to form islands. Coherent generator groups, 

load/generation balance, and other security criteria such 

as avoiding overloading of any transmission line within 

islands, need to be considered in order to determine 

separation interfaces. In addition, consideration should be 

given to whether the separation interfaces are 

topologically fixed or adaptive to changes of power-flow 

profiles or coherent generator groups. Due to topological 

characteristics of power systems, generators tend to form 

coherent groups oscillating with each other under 

disturbances. Coherent generation groups can be studied 

offline using, for example, slow coherency analysis 

technology. However, the actual out-of-step mode may 

not be angular separation between all those offline 

identified groups. Perhaps only one or two generators or 

generator groups go out of step from the other generators 

in the system. Therefore, the separation interfaces should 

be able to only separate actual out-of-step groups [9]. 
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For effective damping control for online operation of 

power systems, it is essential to have an online adaptive 

coherency grouping approach [10, 11]. Such a scheme 

will set the boundaries of islands based on the nature of 

the disturbance. In pursuance of this, a number of methods 

for detecting coherent generators online to facilitate 

system separation have been proposed [10 – 19]. 

This paper makes a contribution to this ongoing 

research in adaptive coherency identification. It proposes 

a novel online scheme for predicting coherent generator 

groups that may be formed after a disturbance to improve 

the success rate of controlled islanding. The proposed 

scheme predicts coherent groups before they are formed. 

The scheme uses as inputs, the rotor speed deviations of 

the individual generators within the system. Trained 

multilayer perceptron neural networks (MLPNNs) are 

used to predict the coherent generator groups that are 

likely to be formed. The scheme was tested using 

simulations done on the IEEE 39-bus test system. 

 The method is exclusively based on generator 

speed deviation which is straightforward and has a well-

established accessibility at the generator shaft. The 

technique can be used directly as the main tool to predict 

generator coherency and for example system separation. 

It can also be used as a more extensive tool to provide 

control parameters for system stabilization equipment 

such as FACTS or PSS devices. 

 

2. Rotor speed deviation as input parameter 

Equation (1) shows the fundamental equation governing 

rotor dynamics. This equation is commonly referred to as 

the swing equation [20].  
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where M is the inertia coefficient,  is the rotor angle, 

mP is the mechanical power, and eP  is the electrical power. 

Rotor angles have been extensively used for transient 

stability studies. Rotor angles as inputs need to be 

expressed relative to a common reference. This reference 

cannot be based on a single generator, since any 

instability in the reference generator makes the relative 

angles meaningless. In order to overcome this difficulty, 

the concept of system centre of inertia (COI) angle is used 

to derive a reference angle [21]. However, COI values in 

practice require continuous updates using real time 

measurements. This requires extra pre-processing and has 

significant errors. There is therefore the need for alternate 

inputs with simple implementation 

The time derivative of rotor angle is the rotor speed 

deviation in electrical radians per second. 

Mathematically, it can be written as: 

                                s
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where

 

 is the rotor speed deviation,  is the rotor speed 

at a particular time, and s is the synchronous speed. 

It can also be shown that [22],     
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where H is the inertia constant and aP  is the difference 

between input mechanical power and output 

electromagnetic power. For stability to be attained after a 

disturbance, it is expected that 
dt

d
 will be zero in the first 

swing [23]. This condition gives rise to the equal area 

criterion which is a well-known classical transient 

stability criterion. From (2) and (3), it can also be written 

that 
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Equation (4) suggests speed deviation as a good input 

parameter for the prediction of transient stability status.  

However, not many researchers have based their 

studies on rotor speed deviations. It is evidenced from (2) 

that the rate of change of rotor angle bears a direct 

relationship with the change in rotor speed. Thus rotor 

speed deviations also have the potential of giving 

information that can be extracted from rotor angles.  

 The maximum rotor speed deviation of a generator, in 

the first swing following a transient disturbance, will be 

much lower if it maintains synchronism with the other 

generators than if it goes out of step. Consequently, the 

maximum rotor speed deviation of each generator within 

the first swing can be used as an input parameter to predict 

the synchronism status of each generator of a power 

system following a transient disturbance. Mathematically,   

 iji Maxx 
   

j = 1, 2, … , m
         

(5) 

where ix  is the input data of algorithm to predict the 

synchronism status of generator i, ij
 
are the several 

rotor speed deviations of generator i sampled after the 

tripping of a line or bus, and m is the number of samples. 

Very often, individual generators or groups of 

generators tend to oscillate together for a particular fault. 

Their rotor angle swings are dependent on each other and 

they evolve together with time [24]. This can be expressed 

by: 

               
      maxijji tttKtt  0      (6) 

where i and j are pairs of generators, ijK is a constant 

whose value may change with time.  

The value of ijK will be small and nearly constant 

within a coherent group. For a pair of generators which go 



 

 

 

out of step, the value of ijK will be large and may also 

largely vary with time. It follows from (6) that 
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From which       

       tK ijji 2                        (8) 

ijK2  is another constant whose value may also 

change with time.  

  

Equation (8) shows that following a disturbance, the 

difference in speed deviation of coherent generators will 

be small and nearly constant while the difference in speed 

deviation of pairs or group of generators that go out of 

step will be large and also vary. Also, generators that 

remain stable after a disturbance, keep their coherency. 

Rotor speed deviation of each generating unit can be 

obtained with the help of phasor measurement units 

(PMUs) [25, 26]. Thus algorithms based on rotor speed 

deviations can be implemented in the field. 

 

3. Artificial neural networks as decision making tool 

       Artificial Neural Networks (ANNs) represent a 

modern and sophisticated approach to problem solving 

widely explored also for power system protection and 

control applications. ANNs perform actions similar to 

human reasoning, which relies upon experience gathered 

during a training process. Advantages of ANNs 

computing methodologies over conventional approaches 

include faster computation, learning ability, adaptive 

features, robustness and noise rejection [27]. 

ANNs are made up of a number of simple and highly 

interconnected processing elements, called neurons [28]. 

Figure 1 shows a mathematical model of an artificial 

neuron [29]. 

 
Fig. 1: Mathematical model of an artificial neuron 

 

The mathematical model of a neuron as shown in fig. 1 is 

expressed as [28]: 
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where jO is the output of a neuron, jf is a transfer 

(activation) function which is differentiable and non-

decreasing, jkw is an adjustable weight that represents the 

connection strength, and kx is the input of a neuron. 

Various types of neural networks exist. These include 

multi-layer perceptrons, radial basis networks, Kohonen 

networks and recurrent networks [30]. Two commonly 

used neural networks are radial basis function (RBF) and 

multilayer perceptron (MLP) neural networks [30, 31]. 

The ANN used in this work is the Multi-Layer Perceptron 

neural network (MLPNN). MLPNN is a popular ANN 

with fast decision making capabilities [30-32].  

 

4. Proposed prediction scheme for coherent 

generator groups 

       The proposed algorithm for the prediction of coherent 

generator groups makes use of the outputs of a scheme 

already developed in [33] that predicts the stability status 

of each generator after a disturbance.  The scheme in [33] 

uses the maximum speed deviation of each generator, 

taken within the first cycle after the tripping of a line or 

bus, as input data. A trained multilayer perceptron neural 

network is used as a decision making tool to predict the 

stability status of each generator.  

The coherency prediction scheme proposed in this 

paper uses the predicted stability status of each generator 

together with the following data, obtained in accordance 

with (5) and (8): 

  )(Maxx i1                                  (10)

  )(Maxx j2                     (11) 

)(Max)(Maxx ji  3           (12) 

where i is a reference generator in a coherent group and j 

is a generator to be placed in a coherent group. The 

reference generator is a generator with the highest 

)(Max   value. 

The coherent generator groups prediction scheme 

places all generators predicted to be transient stable, in 

one coherent group called ‘S’. The scheme then focuses 

on only generators which are predicted to go out of step 

and determines whether they will belong to the same 

coherent group or different groups. Two multilayer 

perceptron neural networks namely MLPNN1 and 

MLPNN2 were trained for the prediction of coherent 

generator groups. Two MLPNNs were employed in order 

to increase the prediction accuracy of the proposed 

scheme.  The prediction is done in three stages. MLPNN1 

is responsible for the prediction of coherent groups in the 

first stage while MLPNN2 is responsible for the second 

and third stages. Both MLPNN1 and MLPNN 2 have the 

same architecture.  

 



 

 

 

34w

14w

16w
17w

1

2

3

4

5

6

7

8

15w

25w

26w
27w

24w

35w

36w

37w

48w

58w

68w

78w

O

50w

40w

60w

70w

80w
20w

10w

30w

2x

1x

3x

1

1

1

1

1

1

1

1

11w

22w

33w

Input layer

Output layer

Hidden layer
 

Fig. 2: Neural network architecture of coherency prediction scheme 

 

The architecture of the neural networks is shown in 

fig. 2. In fig. 2, x1 is the maximum speed deviation of the 

reference generator in a coherent group, x2 is the 

maximum speed deviation of a generator which is to be 

placed in a coherent group, and x3 is the absolute value 

of the difference between x1 and x2. O is the output of 

the neural network, which is expected to be either 1 or 

0. An output of 1 means that the generators will be in 

different coherent groups, while an output of 0 means 

that the generators will be in the same coherent group. 

Each MLPNN had 3 neurons in the input layer, 4 

neurons in the hidden layer, and 1 neuron in the output 

layer. Each neuron had a bias. Biases have a constant 

input value of 1. The input and output neurons had 

‘purelin’ transfer functions while the neurons in the 

hidden layer had ‘tansig’ transfer functions.  

 The output, O, of the MLPNN can be determined as 

follows: 

The output, 1y  of neuron 1 is given by: 

            
  10111101111 wwxwwxfy 

                
(13)

 
 

 

The output, 2y  of neuron 2 is given by: 
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(14)

 
The output, 3y  of neuron 3 is given by: 

           
  30333303333 wwxwwxfy 

               
(15) 

The output, 4y  of neuron 4 is given by: 

      
 403432421414 wwywywyfy 
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The output, 5y  of neuron 5 is given by: 
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The output, 6y  of neuron 6 is given by: 

            
 603632621616 wwywywyfy 
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The output, 7y  of neuron 7 is given by: 

 703732721717 wwywywyfy                            
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The output of the neural network, O which is the output of 

neuron 8 is given by: 

    
 80787686585484 wwywywywyfO 

                           

80787686585484 wwywywywy         (20) 

 

MLPNN1 and MLPNN2 were each trained using the 

Levenberg-Marquet training algorithm.  The 

Levenberg– Marquardt algorithm which was 

independently developed by Kenneth Levenberg and 

Donald Marquardt, provides a numerical solution to the 

problem of minimizing a nonlinear function. It is fast, 

and has stable convergence. This algorithm is suitable 

for training small and medium-sized networks [34]. 

A flowchart of the proposed coherency prediction 

scheme is shown in fig. 3. The coherency prediction 

scheme is activated when a generator or system is 

predicted to be transient unstable following a 

disturbance. The scheme obtains the predicted stability 

status of each generator and sorts the generators into 

generators predicted to be stable and those predicted to 

be unstable. The generators predicted to be stable are all 

placed in a classified coherent group ‘S’, while the 

generators predicted to be unstable are placed in an 

unclassified coherent group ‘U’. The scheme stops 

when only one generator is found in U. That generator 

is put in coherent group C0. When more than one 

generator is found in U, the scheme sets a variable j to 

zero and obtains the maximum speed deviation (MSD) 

of each generator in U, in the 5th cycle after the tripping 

of a line or bus following a disturbance. j is a positive 

integer which indicates various coherent groups. The 

generator with the highest MSD value is placed in a 

classified coherent group ‘Cj’ and made the reference 

generator ‘ref(jmod2+1)’ in the group. The MSD of 

‘ref(jmod2+1)’is used as input 1x of MLPNN(jmod2+1) 

for the placement of all other generators found in 

unclassified group U. For each of the other generators in 

U, its MSD is used as input 2x of MLPNN(jmod2+1) 

for the placement of that generator in classified group 

‘Cj’. MLPNN(jmod2+1) determines whether a 

generator in U has to be added to group Cj or belongs to 

a different group. j is incremented when U still has a 

generator or generators. The scheme ends when no 

generator is found in U. 

 

Obtain the predicted stability 

status of all generators

Sort generators into stable and unstable

Put stable generator identifiers in set S 

and those of unstable generators into U

Is n(U) > 1 ?Empty U into C0
N

Y

End
Set j = 0

Obtain MSDs of all generators in U

Select the generator with the highest 

MSD and transfer into set Cj and set 

MSD as ref(jmod2+1)

Feed MSD of each of the remaining 

genertors in U into MLPNN(jmod2+1)

Transfer generator(s) whose MSDs 

resulted in an output of 0 into Cj

Is U empty?

End

Y

Increment j
N

 Fig. 3: Flowchart of proposed prediction scheme for 

coherency grouping 

 

5. Configuration of test system 

The coherent generator groups prediction scheme 

was test using the IEEE 39-bus test system, also known 

as the New England test system. The IEEE 39-bus test 

system is a standard test system that is widely used for 



 

 

 

small and large signal stability studies [21,36–39]. This 

test system has also been used to test algorithms for 

online detection of coherent generator groups [11, 14, 

15, 19] and the results compared with larger systems 

show that it is adequate for testing schemes such as the 

one that has been proposed in this paper. The test system 

is shown below as Fig. 4. It consists of 10 generators. 

Generator 1 (G1) is a generator representing a large 

system. Data for the modeling of the test system was 

obtained from [39].  

 
Fig. 4.  IEEE 39-bus Test System 

 

 

6. Simulations to generate training and test data 

The modeling and simulation of the test system were 

carried out using the Power System Simulator for 

Engineers (PSSE) software [40].  Three-phase faults 

were created at various buses and on various lines. The 

system loading condition was also varied. The loading 

conditions used were: base load, base load increased by 

5%, base load increased by 7%, and base load increased 

by 10%. The output data obtained from the simulations 

for testing the proposed scheme were rotor speed 

deviations of the generators. Rotor angles of the various 

generators were also obtained for the purpose of 

categorizing the simulation. 

In each of the simulations, a generator is classified to 

be unstable or goes out of step when it accelerates or 

decelerates relative to the others such that the angular 

difference between it and the other generators is more 

than 180o, 1 second after the tripping of a line or bus 

following a disturbance [36].  

Coherent generator groups are formed whenever 

transient instability occurs. The generators in each 

group run in synchronism with each other but out of step 

with other generators in a different coherent group. Thus 

in the simulations, groups of generators whose angular 

difference did not exceed 180o were deemed to be in one 

coherent group.  

 

7. Training of multilayer perceptron neural 

networks 

The two neural networks used in the proposed 

algorithm namely MLPNN1 and MLPNN2 were each 

trained using the Levenberg-Marquet training 

algorithm. The neural networks were trained using the 

MATLAB® software [41]. MLPNN1 was trained to give 

an output of ‘0’ if the generator to be classified will be 

coherent with reference generator ‘ref1’. Reference 

generator ‘ref 1’ is the generator with the highest MSD 

value in the second stage of the coherency prediction 

scheme. MLPNN1 gives an output of ‘1’ if the generator 

to be classified will not be coherent with ‘ref1’. MLPNN 

2 was trained to give an output of ‘0’ if the generator to 

be classified will be coherent with reference generator 

‘ref 2’. Reference generator ‘ref 2’ is the generator with 

the highest MSD value in the third stage. MLPNN 2 

gives an output of ‘1’ if the generator to be classified 

will not be coherent with ‘ref 2’. MLPNN1 was trained 

using data from two transient unstable conditions. 

MLPNN2 was trained with data from one transient 

unstable condition. The input data for the training was 

obtained in accordance with (10) – (12). 

Fig. 5 and fig. 6 show the training performance curves 

of MLPNN1 and MLPNN 2 respectively. 

 



 

 

 

 
Fig. 5: Training performance of MLPNN1 

 

 
Fig. 6: Training performance of MLPNN 2 

 

8. Test results 

Data from 114 faults that led to transient instability 

and subsequent formation of coherent generator groups 

was used to test the proposed scheme. For example, fig. 

7 shows a plot of rotor angles for a three-phase fault on 

the line between buses 5 and 8. The loading condition 

was at base load. The fault was applied at time 

s.t 101  and lasted for 1 second. The line was tripped 

at time s.t 112  resulting in some generators going out 

of step. Subsequently three coherent generator groups 

were formed. It can be observed from fig. 7 that 

generators 2 and 3 (G2 and G3) form one coherent 

group. Generators 4, 5, 6, 7, 8, 9, and 10 (G4, G5, G6, 

G7, G8, G9, and G10) form another coherent group. 

Generator 1 (G1) stands alone.  

The corresponding plot of rotor speed deviations is 

shown in fig. 8. It can be seen from fig. 8  that the rotor 

speed deviations of the generators in each coherent 

group, immediately following the tripping of the line (at 

1.1 seconds), are quiet close to each other. However, the 

speed deviations for different machines belonging to 

different coherent groups are clearly distinct.  For 

example, whereas the speed deviations of generators 2 

and 3 (G2 and G3) which form the first coherent group 

are much greater than 0.005, those in the second 

coherent group which comprises generators 4, 5, 6, 7, 8, 

9 and 10 (G4, G5, G6, G7, G8, G9, and G10) are lower 

than 0.005. Also, the speed deviation of generator 1 

(G1) which alone formed the third group is much lower 

than 0.001. Additionally, the difference between the 

speed deviations of generators in a coherent group is 

much lower than that between generators belonging to 

different coherent groups. Similar trends were observed 

for the other simulations that were carried out. Thus, the 

plots from the simulations corroborate what has been 

demonstrated theoretically that the speed deviations of 

the various generators in a system can be used to predict 

coherent generator groups following a disturbance.   

 

 
Fig. 7: Rotor angles for a three-phase fault on line 

between buses 5 and 8 

 



 

 

 

 

 
Fig. 8: Rotor speed deviations for a three-phase 

fault on line between buses 5 and 8 

 

Table 1 shows the number of coherent groups that 

were formed in the 114 fault conditions simulated. 

 

Table 1: Number of coherent groups formed for various 

fault conditions 

No. Number of fault 

conditions 

Number coherent groups 

for each condition 

1 83 2 

2 31 3 

 

For example, Table 2 shows the coherent groups 

formed for a three-phase fault on the line between buses 

5 and 8. In the first stage of the proposed grouping 

algorithm, generators in group C were placed in 

coherent group S. The generators in groups A and B 

were placed in unclassified group U1. In the second 

stage of the algorithm, generator 3 which had the highest 

MSD (that is 0.0088) was made the reference generator, 

‘ref1’. Generator 3 was thus placed in classified 

coherent group C1. The scheme then determined 

whether or not generators 1 and 2 were in group C1. 

Generator 1 did not belong to group C1 so MLPNN1 

was required to give an output of ‘1’, which it did. 

Generator 2 belonged to group C1 and as expected, 

MLPNN1 gave an output of ‘0’. The algorithm ended at 

the second stage after placing generator 1 in group C2. 

 

Table 2: Formed coherent groups for a fault on the line 

between buses 5 and 8 

Group name Generators 

A 1 

B 2 and 3 

C 4, 5, 6, 7, 8, 9 and 10 

 

Similar responses were obtained for the other 113 fault 

conditions. There were however, some grouping errors. 

The grouping error of the proposed scheme was found 

to be 8.78%. 

 

9. Conclusion 

This paper has presented an online scheme for 

predicting coherent generator groups that may be 

formed following transient instability. The proposed 

scheme uses rotor speed deviations obtained in the 5th 

cycle after the tripping of a line or bus following a 

disturbance. The use of rotor speed deviation which can 

be measured in the field with the help of phasor 

measurement units makes the implementation of the 

scheme feasible. The use of only one input parameter as 

well as a simple input data processing approach also 

makes the scheme simple to implement.  
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