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Abstract: Most of the systems in our daily life consist of 

power electronic circuits. They are micro circuits which 

are difficult to be analyze because the circuit consists of 

nonlinear elements. This paper deals with one of the 

power electronic circuit, boost converter. The non-linear 

elements of the converter circuit are linearized. The 

obtained linearized converter circuit is a higher order 

model. Designing a controller for this higher order model 

is complex and simulation time also increases. So, efficient 

order reduction techniques have been used to reduce the 

system order. The reduced order system is now used to 

design a controller. H-infinity method is used to design a 

PI and PID controller for load voltage control of the 

converter circuit. Conventional PID and ZN PID 

controllers were also been developed for comparison with 

H-infinity based controllers. H-infinity techniques have the 

advantage over classical control techniques in that, they 

are readily applicable to problems involving multivariate 

systems with cross-coupling between channels. 

Performances of these controllers were compared in terms 

of settling time. The models are simulated using MATLAB 

13.0 simulink software. Simulation results show that 

hankel was a better method for order reduction depicting 

same characteristics for higher and lower order models. 

H-infinity based PID controller show better results 

compared to other controllers.  

 

Keywords:Order reduction, Boost Converter, Hankel, H-

infinity. 

I. INTRODUCTION 

Switching power converters pose several 

unique problems in the construction of efficient time-

domain simulators. Events of interest in a typical 

power converter cover many orders of magnitude on 

the time scale, starting from switching transitions in 

the order of nanoseconds to closed-loop start-up or 

load transients that may last for seconds[1]. Detailed 

models that describe physical properties of 

semiconductor switching devices are used only when 

results of interests are within one, or at most several 

switching cycles. Such results include switching 

losses, lengths of switching transitions, and voltage 

current overshoots during switching. For majority of 

other simulation tasks, such as studies of the circuit 

steady-state waveforms, conversion functions, 

stability of feedback loops, load, input or reference 

transients, application of detailed nonlinear models is 

impractical. This is because simulation time step 

must be short compared to the switching period, and 

each simulation step requires computationally 

intensive iterative solution[2]. If the simulation runs 

over many switching cycles, simulation time 

becomes the limiting factor. In order to improve 

efficiency of time-domain simulation, semiconductor 

devices are replaced with much simpler models. The 

simplification is justified by the fact that switching 

transitions are many orders of magnitude shorter than 

the total simulation time, and that errors introduced 

by ignoring details of the switching transitions are 

insignificant in the results expected from long-term 

simulations. Numerous methods specifically geared 

toward efficient long-term simulation of switching 

power converters have been developed. An ideal 

switch has zero impedance when on, zero admittance  

when off, and switches between the two states in zero 

time. With n ideal, single-pole, single-throw 

switches, the switching converter network reduces to 

one of two possible switched networks (without 



switches). Then, approach is to write and solve state-

space equations for each of the switched networks, 

and to establish conditions for transitions of switched 

networks. These switched networks is of higher order 

and needs to be reduced to lower order for less 

complication in designing controller circuits for the 

switching converters. These are various order 

reduction methods are available. Among which 

modal order reduction is one of them. an equivalent 

circuit is directly generated from the reduced transfer 

function obtained using MOR based on Pade 

approximation via the Lanczos process[3]. 

Model order reduction is a technique for 

reducing the computational complexity of 

mathematical models in numerical simulations. Many 

modern mathematical models of real-life processes 

pose challenges when used in numerical simulations, 

due to complexity and large size (dimension), model 

order reduction aims to lower the computational 

complexity of such problems[4]. The oldest method 

is pade approximation method for reducing the 

higher order to lower order[5]. There is a different 

mixed order techniques also available for reducing 

the order. In that one of the mixed method is routh-

pade approximation[6]. One of the new order 

reduction technique considered in the paper is 

Hankel reduction method. Hankel reduction is a 

stochastic realisation theory. Several methods based 

on Hankel matrix have been used for deriving lower 

order state models from a given complex system 

described by its transfer function matrix or state 

model. The minimal realization can be achieved in 

fixed number of operations on the Hankel matrix. 

The method is applicable to linear SISO and MIMO 

dynamic systems[8]. 

The reduced order models obtained from the 

order reduction methods are used for designing 

controller for the main switching converter. In the 

literature, a number of control strategies have been 

suggested based on the conventional linear control 

theory. A conventional PI controller is a basic control 

strategy which when used, will not reach a high 

performance[9]. Ziegler and Nichols proposed a 

method to develop PID controller based on their 

study, which have been very influential but it has 

own drawbacks with poor robustness[10]. H∞ method 

is a modern technique developed to design PID 

controller for the considered switching converter. H∞ 

methods are used in control theory to synthesize 

controllers to achieve stabilization with guaranteed 

performance. To use H∞ methods, a control designer 

expresses the control problem as a mathematical 

optimization problem and then find the controller 

that solves this optimization[11]. H∞ techniques have 

the advantages over classical control techniques in 

that they are readily applicable to problems involving 

multivariable systems with cross coupling between 

channels[12]. The comparison of the proposed H∞ 

method, ZN PID method and conventional PI 

suggests that the time domain characteristics with H∞ 

PID controlled are better then other controllers 

(fig.13). now currently work progress on MOR based 

on different methods. They are based on Quadratic 

method[13] and Proper Orthogonal Decomposition 

[14] methods.  

 

II. SYSTEM MODELLING 

2.1. General Boost Converter 

In boost converter, the output voltage is 

greater than the input voltage – hence the name 

“boost”. A boost converter (step up converter) is a 

DC to DC power converter that steps up the voltage 

(while stepping down current) from its input as 

supply to its output as load. It is a class of switched 

mode of power supply(SMPS) containing the at least 

two semi conductors (one is a diode and one is 

transistor) and at least one energy storage element. A 

capacitor, inductor or the two I combination to 

reduce the voltage ripple, filters made of capacitors 

(sometimes in combination with inductors) are 

normally added to such a converters output (load side 

filter) and input (supply side filter). The switch in a 

boost converter is typically a MOSFET, IGBT or 

BJT are used as the switches. 

The ideal schematic diagram for the boost converter 

is shown in below. 



 

Fig. 1.SchematicCircuit of Boost Converter 

2. 2. Detailed High-Order Model 

In the ideal boost converter has the linear and 

nonlinear components. So we can cange the 

components of nonlinear to linear as shown in below. 

Power converter model synthesis consists of 

component models and control laws. First, high-order 

detailed models of switching-converter components 

diode, switches are shown below, are set forth. A 

wide-bandwidth inductor model includes equivalent 

series resistance, rL, and lumped shunt parasitic 

capacitance, cL. The equivalent series resistance, rC, 

and inductance, Lc, of the capacitor are extracted 

from the hardware prototype using impedance 

characterization. Switching-component modeling is 

more challenging, as the resulting model should 

predict accurately both steady-state characterizations 

as well as fast dynamics. The MOSFET is 

represented as a switching state dependent resistance 

with appropriate drain to source parasitic 

capacitance, Csw, and wiring inductance, Lsw.  

These values can be found in MOSFET data 

sheets. The static V-I characteristics of the diode can 

be modeled as a diode state-dependent series 

resistance and an offset voltage source. The 

capacitance exhibited by semiconductor-metal 

junctions plays a dominant role in turn-on/-off 

transients. Therefore, the switching transient 

dynamics, such as reverse recovery, are accounted 

for by a diode state-dependent linear capacitor, Cd. 

The capacitance is higher when the diode is off. A 

series resistance is considered with this capacitor, rcd, 

to damp the reverse recovery current. Wiring 

inductance and resistance of the diode (Ldand rLd) are 

also considered. A different variation of this diode 

model is presented. It should be noted that proposed 

models in above Fig, are just one form of model 

development; one can also use alternative piecewise-

linear high-fidelity component models 

 
Fig. 2.Highly detailed behavioral component models: (a) 

Inductor; (b) Capacitor; (c) Diode; (d) MOSFET 

In the above figure switching component 

models and, subsequently, the final converter model 

depend on the state of switching components. 

Switching state and timing are either externally 

determined by a command signal (transistors turn 

on/off), or internally resolved by meeting appropriate 

threshold conditions (e.g., diodes). Mathematically, 

the switching time constraint equation can be 

expressed as 

                                 

( ( ), ( ), ) 0j j j j

f t fc x t u t t                                                  

The continuous state-space model is 

determined by partitioning the circuit graph to the 

spanning tree and link branches, and choosing the 

inductive link currents and capacitive tree voltages as 

the state variable. This process is automated in 

available numerical toolboxes (e.g., automated state 

model generator). Based on the component models in 

Fig.2,the state vector consists of inductor currents 

and capacitor voltages of both bulky and parasitic 

components
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Where i=1……..kL, j = 1……..KC, m = 1……Ksw, 

and n = 1……..Kd, kL, kC, kSW, kd are the number of 

inductors, capacitors, active switches, and diodes. 

The input vector is composed of the input voltage 

sources, load currents, and the diode voltage drops. 
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Fig. 3.Detailed High-Order Model 

Considering, the state variables and input 

variables as below
                                                                                                                                  

[ , , , , , , , ]
L c sw sw d d

i i j j m m n n T
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[ , ]S loadU V i  

State space variables are obtained from higher order 

model as in fig.3. using block reduction techniques. 

The state variables are obtained as 
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The obtained system is a 8th order system. As 

the realistic model of the system was high in 

dimension, that a direct simulation or design would 

be neither computationally desirable nor practically 

possible in this case. Thus, reduction of system 

model is highly desirable. 

 

III. ORDER REDUCTION 

There are different types of order reduction 

techniques are available, in that some of the order 

reduction techniques used in this work are 

1. Pade approximation 

2. Modal reduction 

3. Hankel reduction 

3.1. Pade Approximation Reduction 

The Pade  approximation was introduced by Pade 

in 1892 and it was extended by wall in 1948.  

Consider a function 

f(x)= c0+c1x+c2x2+c3x3+………+cnxn                                   

and a rational function 
( )

( )

m

m

u x

v x
are the mth order 

polynomial in m n. the rational function 
( )

( )

m

m

u x

v x
 is 

set to be Pade approximation of f(x) if and only if the 

first (m+n) terms of power series expansion of f(x) 

and rational function
( )

( )

m

m

u x

v x
are identical.  

For the function f(x) is to be approximated, let the 

following Pade approximant can be defined as 
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The reduced order transfer function is Rk(s). 
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m = order of highest of numerator 

n = order of highest of denominator  

This is the reduced order transfer function for the 

considered system in Pade approximation.  

 

3.2. Modal Reduction 

Balancing is an important approach for 

modal reduction of controlled systems which consists 

of two steps: the first step is to find a transformation 

that balances the controllability and observability 

gramians in order to determine which states have the 

greatest contribution to the input-output behavior. 



The next step is to perform a Galerkin projection 

onto the states corresponding to the largest singular 

values of the balanced gramians for the region of 

interest in state-space. In order to perform model 

reduction via balancing, three components are 

required: a controllability gramian, an observability 

gramian, and a transformation matrix which balances 

the system. 

Gramians (or covariance matrices) and the 

transformation are required for balanced model 

reduction. The routines for unscaled systems are 

mainly for verifying these routines by comparison 

against the MATLAB commands for linear systems. 

In practice, the routines for scaled systems are 

applied as it needs to be taken into account that a 

state changing by orders of magnitude can be more 

important than a state which hardly changes, even 

though its steady state may have a smaller absolute 

value. After obtaining a balanced system, it needs to 

be determined how many states can be reduced and 

which reduction method to use. The former problem 

can be solved by a trial and error procedure while 

taking into account the magnitude of the Hankel 

singular values of the states to be reduced. The 

answer to the latter question is that balanced 

truncation is the method of choice for nonlinear 

systems as other techniques. 

 

3.3. Hankel Order Reduction 

This is a stochastic realization theory with 

the Hankel matrix present a new procedure for 

obtaining a reduced-order state variable model for a 

stationary Gaussian process. Furthermore, we also 

show that the error in our N-dimensional reduced 

order model is bounded by the N + 1 singular value 

of the system’s Hankel matrix. The Hankel matrix 

results have also been used and elsewhere in 

deterministic and stochastic model reduction. The 

technique is completely different from others. We 

use the stochastic realization theory in and solve a 

different model reduction problem.  

              Throughout, we follow the standard notation 

for Hilbert spaces.  The orthogonal projection onto a 

subspace   is denoted by P  . The space L2 = 

L2(0,2π) and the inner product on L2 is defined by 

                             

2

2

0

1
( , ) ( , ) ( ) ( )

2

it it

L
h g h g h e g e dt      (h, g∈L2). 

Moreover, H2  is the Hardy space of analytic 

functions in L2. To be precise, f ∈ H2 if and only if f 

is in L2 and (f, e-int) = 0 for all n > 0. Throughout, 

Г(ψ) is the Hankel operator on H2 with symbol ψ (in 

L∞) defined by 

 

           Г(ψ) f (eit)= PH
2 ψ (eit)f(e-it)      (f(eit)∈H2) . 

Throughout, y(n) is a purely nondeterministic 

stationary Gaussian random process. The process 

y(n) can be generated by a stable state variable model 

of the form 

x(n+ l)=Ax(n)+Bu(n) 

                       y(n)=Cx(n)                                    (1) 

Where A, B, and C are operators on the appropriate 

space, and u(n) is a Gaussian white noise process 

such that x(m) is independent to u(n) for all m ≤ n. 

The output covariance sequence is given by 

    Rn= E (y(n)  0y ) =CAnXC* (n≥0)                   (2) 

Where X is the state covariance satisfying the 

discrete Lyapunov equation 

           X=AXA*+BB*       (O<X<∞)                      (3) 

System A, B, C, X is called a stochastic realization of 

the covariance sequence R, when (2) and (3) hold. 

Since y(n) is purely nondeterministic, there 

exists unique outer or minimum phase factor θ in H2 

such that  ( ( ), (0) ( ( ) (0))nR y n y E y n y  

                

2

int

0

1
( ) ( ) ( , ).

2

int it ite e e dt e



           (4) 

Without loss of generality it is assumed that R0 = 1 or 

equivalently   = 1. Let y = V∞
-∞y(n) be the 

Hilbert space generated by the process y(n) with the 

inner product determined by the expectation in (4). 

By (4) there exists a unitary operator Y mapping ϑ 

onto L2 such that Yy(n) = eintθ. Therefore, y(n) is 

unitarily equivalent to eintθ. In particular, y(0) can be 

identified with 𝜃( = Yy(0)). Our strategy is to obtain a 

reduced order model for the process eintθ on L2 .Since 

Yy(n) = eintθ, this yields a reduced-order model for 

y(n). 

 

 



IV. CONTROLLER DESIGN 

The reduced order system is used to design controller 

for voltage control of the load of the boost converter. 

A conventional PI controller is designed to the boost 

converter system to observe the response of the 

system. The controller is connected to the system as 

follows 

 
 

Fig. 4. Plant with controller 

 

4.1. ZN-PID Controller 

Ziegler and Nichols, both employees of 

Taylor Instruments, described simple mathematical 

procedures, the first and second methods 

respectively, for tuning PID controllers. These 

procedures are now accepted as standard in control 

systems practice. Both techniques make a prior 

assumption on the system model, but do not require 

that these models be specifically known. Ziegler-

Nichols formulae for specifying the controllers are 

based on plant step responses.  

Ziegler and Nichols developed their tuning 

rules by simulating a large number of different 

processes, and correlating the controller parameters 

with features of the step response. The key design 

criterion was quarter amplitude damping. Process 

dynamics was characterized by two parameters 

obtained from the step response. We will use the 

same general ideas but we will use robust loop 

shaping [7,8] for control design. A nice feature of 

this design method is that it permits a clear trade off 

between robustness and performance. 

We first set Ti=∞ and Td=0; and using the 

proportional control action only, increase Kp from 0 

to a critical value Kcr at which the output first 

exhibits sustained oscillations. Thus, the critical gain 

Kcr and the corresponding period Pcr are 

experimentally determined from the response of the 

system. Ziegler and Nichols suggested that we set the 

values of the parameters Kp , Ti , and Td according 

to the formula using Kcr and Pcr as, 

Proportional constant  (Kp) = 0.6 Kcr 

Integral time constant (Ti) = 0.5 Pcr 

Derivative time constant (Td) = 0.125 Pcr 

The integral constant and derivative constant are 

found using their time constants as, 

Ki= Kp/Ti , Kd = Kp*Td 

If the system has a known mathematical model (such 

as the transfer function), then we can use the root-

locus method to find the critical gain Kcr and the 

frequency of the sustained oscillations Wcr , where 

2πWcr = Pcr. These values can be found from the 

crossing points of the root-locus branches with the jw 

axis. Thus, Kp, Ki and Kd values are obtained using 

Kcr and Pcr. 

Bode plot method can also be used to determine the 

values. 

 

4.2. H∞ Controller 

Stimulated by the shortcomings of LQG control there 

was in the 1980’s A significant shift towards H∞ 

optimization for robust control. This development 

originated from the influential work of Zames 

(1981), although an earlier use of H∞ optimization in 

an engineering context can be found in Helton 

(1976). Zames argued that the poor robustness 

properties of LQG could be attributed to the integral 

criterion in terms of the H2 norm, and he also 

criticized the representation of uncertain disturbances 

by white noise processes as often unrealistic. As the 

H∞  theory developed, however, the two approaches 

of H2 and H∞ control were seen to be more closely 

related than originally thought, particularly in the 

solution process, see for example Glover and Doyle 

(1988) and Doyle, Glover, Khargonekar and Francis 

(1989). In this, we will begin with a general control 

problem formulation into which we can cast all H2 

and H∞ optimizations of practical interest. The 

general H2 and H∞ problems will be described along 

with some specific and typical control problems. It is 

not our intention to describe in detail the 

mathematical solutions, since efficient, commercial 

software for solving such problems is now so easily 

available. Rather we seek to provide an 



understanding of some useful problem formulations 

which might then be used by the reader, or modified 

to suit his or her application. 

 
Fig. 5.General control configuration 

With reference to the general control configuration of 

Figure. The standard H∞ optimal control problem is 

to find all stabilizing controllers K which minimize 

                                 

1 1( , ) max ( ( , )( ))F P K F P K j


   

The H∞ norm has several interpretations in terms of 

performance, One is that it minimizes the peak of the 

singular value of Fl (P(jω), K(jω). It also has a time 

domain interpretation as the induced (worst-case) 

two-norm: Let z = Fl(P,K)ω. Then                                   

2

( ) 0
2

( )
( , ) max

( )
l

t

z t
F P K

t 



  

Where 
2

2 0( ) ( )i iz t z t dt    is the 2-norm of 

the vector signal. 

 In practice, it is usually not necessary to 

obtain an optimal controller for the H∞ problem, and 

it is often computationally (and theoretically) 

simplernto design a sub-optimal one(i.e. one close to 

the optimal ones in the sense of the H∞ norm). Let 

γmin be the minimum value of 1( , )F P K   over all 

stabilizing controllers K. Then the H∞ sub-optimal 

control problem is: given a γ > γmin, find all 

stabilizing controllers K such that 

 

                                    1( , )F P K  < γ 

This can be solved efficiently using the algorithm of 

Doyle et al. (1989), and by reducing γ iteratively, an 

optimal solution is approached. The algoritham is 

summarized below with all simplifying assumptions.  

 
Fig. 6. The LQG problem formulated in the general 

control configuration 

In practice, we would expect a user to have 

access to commercial software such as MATLAB 

and its toolboxes. 

 

           V.  PROGRAMMING RESULTS 

Circuit Parameters of  the Boost Converter System: 

Vg = 5 volt, L = 1.316 mH, rL = 0.14 Ω, CL = 1 pF, 

Lsw = 20 nH, CSW = 200 pF, rSW (on) = 0.2 Ω, rSW 

(off) = 2.3 MΩ, Ld = 5 nH, rLd = 1 mΩ, Vd(on) = 0.61 

volt, Vd(off) = 0 volt, rd(on) = 50mΩ, rd(off) = 

40MΩ, Cd(on) = 15pF, Cd(off) = 100pF, rCd = 5mΩ, 

C = 42µF, Lc = 100pH, rC  = 0.38 Ω, Rload = 10.5Ω, 

fSW = 10KHz, Duty = 05. 

The circuit parameters are used to find the 

state space model of the circuit. Step response of the 

system for both inputs are shown in fig.7 and fig.8 

 

 
Fig. 7.Original system response for first input 

 



 
Fig. 8.Original system response for second input 

 

The boost converter circuit considered is of higher 

order, this system is reduced using pade 

approximation, modal order reduction and hankel 

reduction method. The response of the reduced order 

system  obtained from these methods are compared 

in figs.9&10. 

 
Fig. 9.Response of reduced order models obtained from 

pade-approximation, modal reduction methods with 

original system 

 

 
Fig. 10.Response of reduced order models obtained from 

modal reduction, Hankel reduction methods with original 

system 

 

The reduced order model obtained from one the order 

reduction methods is used to deign controller for the 

boost converter circuit. Conventional PI, ZN-PID, H-

infinity PI and PID controllers are designed and 

comparisons are shown in figs.11,12&13. 

 
Fig. 11.Response of conventional PI, ZN PID and H-

infinity PI controllers with original system 

Fig. 12.Response of conventional PI, ZN PID and H-

infinity PID controllers with original system 

 

 
Fig.13. Response of H-infinity PI, PID controllers with 

original system 



TABLE 1: Comparison of controllers with respect to settling time 

CONTROLLER CONVENTIONAL 

PI 

ZN-PID H-INFINITY PI H-INFINITY PID 

Settling time 9.7396 8.4974 7.2221 6.7551 

Rise time 2.6700 2.1951 1.7470 1.0412 

Over shoot 5.4700 9.9701 9.3800 29.7556 

Peak time 5.9817 4.8583 4.0526 2.5552 

 

The comparison of controllers is shown in terms of time domain characteristics in table.1. Among all 

controllers, H-infinity PID controller is proved to be a better controller.  

                    

                          VI. CONCLUSION 

Various controller design techniques have been used 

to design controller for the boost converter circuit. 

Hankel based PID controller is best suitable for 

voltage control of the circuit among all other 

controllers. The controller design is based on reduced 

order system. Various techniques have been used for 

order reduction, among which, hankel reduction 

method was proved to be the reduction method 

producing reduced model similar to higher order 

model.  
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