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Abstract — This paper describes a novel method of 

designing an H∞ loop shaping based Robust Power System 

Stabilizer (RPSS) for multi-machine power system. Based 

on the latest development of non-linear H∞ robust control 

theory, a control design is applied to stabilize the 

linearized uncertain system using Glover-McFarlane loop 

shaping technique. In this paper, RPSS design is 

presented for IEEE 10 machine 39 bus system, using 

Glover-McFarlane H∞ loop shaping technique. Guidance 

for setting the feedback configuration for loop shaping 

and synthesis are also presented.  After obtaining the 

controller, non-linear simulations are performed and 

comparisons of the performances are made with the 

Conventional PSS (CPSS) and the resulting RPSS for a 3-

phase fault. The justification of robustness is also 

provided by comparing RPSS with CPSS by considering 3 

different operating points.   

Key words — H∞ loop shaping, Power system stabilizer, 

Multi machine power system, Robust controller, State 

space. 

1. Introduction 

The main objective of installing Power System 

Stabilizer (PSS) is to achieve desired stability and 

security at a reasonable cost by adding damping to 

electromechanical oscillations and to enhance power 

transfer limits. Conventional stabilizers are not 

designed in a way to guarantee the desired level of 

robustness. Such designs are specific for a given 

operating point; they do not guarantee robustness for 

a wide range of operating conditions. The dynamics 

of a multimachine power system are both nonlinear 

and interconnected. The equilibrium of such a 

system is typically unknown and uncertain and the 

controllers within are also subjected to physical 

limitations. In recent years there has been an 

increasing interest on applying advanced control 

designs in power systems like adaptive control, H∞ 

control, µ synthesis, nonlinear control, feedback 

linearization, fuzzy logic control and neural control 

[1]. The goal of these studies is to achieve stability 

and performance robustness. 

To include the model uncertainties at the controller 

design stage, modern robust control methodologies 

have been used in recent years to design PSS [2].The 

resulting PSS ensures the stability for a set of 

perturbed operating points with respect to the 

nominal system and has good oscillation damping 

ability. The proposed controller is free from common 

deficiencies of power system nonlinear controllers as 

network dependence and equilibrium dependence.  

The H∞ optimal controller design is relatively 

simpler in terms of the computational burden. This 

paper uses the Glover-McFarlane H∞ loop shaping 

design procedure with the normalized coprime factor 

robust stabilization method [3] to design the RPSS. 

This design procedure is applied to design RPSS for 

IEEE 10 machine 39 bus system and provide some 

basic guidelines for loop shaping, weighting 

selection and controller design paradigm 

formulation.  

A number of researchers had worked on power 

system stabilizers.  Attempts are made for RPSS 

design using H∞ loop shaping method, proposed by 

McFarlane and Glover, with the normalized coprime 

factor robust stabilization method for SMIB systems. 

This method is attempted for multimachine system 

based on sequential tuning [1]. No attempts are made 

to implement this method for multimachine system 

based on simultaneous tuning.  The proposed method 

is effectively applied to design RPSS based on 

decentralized scheme with simultaneous tuning. 

The paper is organized in the following sequence.  

In Section 2, the power system model description 

and the problem statement are provided.  In Section 

3, the controller design paradigm is given with a 

greater detail, relating to the concepts of the H∞ 

controller.  The detailed simulation results are 

presented in Section 4 along with the justification of 

robustness by comparing RPSS with CPSS and in 

Section 5, the conclusions are provided. This is 

followed by the references & the appendix.  



2. Development of the power system model 
In this paper, the synchronous machine is modeled 

using Model 1.1 [4] in which case one field winding 

on d-axis and one equivalent damper on q-axis are 

considered. The relevant equations [4] of model 1.1 

are provided in Appendix A. The multimachine 

power system is modeled using Simulink Toolbox of 

Matlab and the same is shown in Fig.18, in the 

Appendix B. A linear state space model is obtained 

for the same using the function LINMOD available 

in Matlab. To study the control of power system 

oscillations, IEEE 10-machine, 39 bus system, taken 

from [4] is used. The single line diagram of the 

system is as shown in Fig.20, in the Appendix C.  

If the PSS design is based on the one machine 

infinite bus model, after the installations of PSSs on 

most machines of a large power system, low 

frequency oscillations may still occur due to lack of 

coordination of these stabilizers [5]. Hence, 

coordinated application of PSSs is required. To 

achieve the coordination, the state matrix of the 

entire system is used to design PSS using Glover-

McFarlane H∞ loop shaping design procedure. For 

the system considered this procedure yields ten 

stabilizers one at each machine. Using the method 

explained in section 3, one of the ten stabilizers is 

selected. Using participation factor technique [6], [7] 

stabilizers are placed only at the machines where 

PSS is most essential.  

For the example considered, the eigenvalues 

associated with the eight modes at the given 

operating point without PSS are given in Table 1. 

The eigenvalues are obtained using the function 

eig(A) available in Matlab, where A is the state 

matrix of the system. The swing modes are the 

eigenvalues close to jω-axis in the s-plane. From 

Table 1, it can be observed that the system has two 

positive eigenvalues corresponding to swing modes 

M7 and M8. Hence the system is unstable under 

normal operating conditions, necessitating the 

requirement of PSS.   

Table 1 Eigen values of The System 
 

Swing mode Without  PSS 

M1 

M2 

M3 

M4 

M5 

M6 

M7 

M8 

−0.4518   ±  8.7079i 

−0.583      ±  8.5765i 

−0.54362 ± 7.6758i 

−0.17556 ± 7.2476i 

−0.25643 ±  6.7783i 

−0.0092673 ± 6.1157i 

0.31593  ± 5.6748i 

0.0076043 ± 3.7055i 

The Table 2 gives the participation factors 

(magnitude) of the system corresponding to modes 

M1 to M8 (*- indicates very small values of 

participation factors). The participation factors are 

the product of left eigenvector and right eigenvector 

of the system for a given mode [6].The model 

matrix, M, of the system is obtained using [M, E] 

=eig (A). The absolute value of the product of the 

inverse of M and M corresponding to the given mode 

gives participation factors of that mode. The speed of 

that machine with highest participation in a 

particular mode is the best signal to damp the 

oscillations due to that mode. In Table 2, Smi 

correspond to slip of   the ith machine. The prominent 

participation factors are highlighted in the table. It 

can be observed from Table 2, that, generators 5, 7, 

8, 1, 4, 3, 9 and 2 control the swing modes M1, M2, 

M3, M4, M5, M6, M7and M8 respectively and the 

participation factors of generators 2, 3, and 4 are 

insignificant. Hence generators 1, 5, 7, 8 and 9 are 

the best locations to place PSSs to damp modes M1 

to M8.   

3. Robust Controller Design 

To start with, a brief review of the design 

procedure relating to the design of the robust H∞ 

controller based on Glover-McFarlane H∞ loop 

shaping technique is presented.  This is followed by 

the design of the robust power system stabilizer 

(RPSS) for the multi-machine power system using 

this technique.  

Table 2 Participation  factors 

Mode Sm1 Sm2 Sm3 Sm4 Sm5 Sm6 Sm7 Sm8 Sm9 Sm10 

M1 

M2 

M3 

M4 

M5 

M6 

M7 

M8 

* 

* 

* 

0.2806 
* 

0.1596 

0.0123 

0.0158 

* 

* 

* 

* 

* 

* 

* 

0.1933 

* 

* 

* 

0.2205 

* 

0.1972 
0.0179 

0.0251 

0.1063 

0.0457 

* 

* 

0.2107 
0.0615 

0.0260 

0.0479 

0.2835 
0.0721 

* 

* 

0.0426 

0.0260 

0.0150 

0.0432 

0.0210 

0.1739 

0.0117 

* 

0.1894 

0.0309 

0.0211 

0.0576 

0.1096 

0.2312 
* 

* 

0.0751 

0.0164 

0.0128 

0.0414 

* 

* 

0.4657 

* 

* 

* 

* 

0.0116 

* 

* 

0.0212 

* 

* 

* 

0.3679 

0.0528 

* 

* 

0.0612 

* 

* 

* 

* 

0.0113 

           



3.1 Review of the procedure for robust controller 

design 

Among many robust control techniques, H∞ 

control theory is one of an excellent robust technique 

for designing RPSS. Based on this theory, three 

techniques of RPSS design are possible using (i) H∞ 

optimal controller (ii) H2/ H∞ mixed sensitivity 

controller and (iii) H∞ loop shaping controller. 

RPSS design using H∞ optimal controller theory is 

tedious and so, in practice a suboptimal rather than 

optimal solution is used. However, this H∞ design 

procedure produces undesirable controllers whose 

zeros cancel all the stable plant poles, which is 

unacceptable when the plant contains lightly damped 

modes [8]. The design of H∞ PSS via mixed 

sensitivity approach reveals the high performance 

and robustness but the selection of weighting 

functions poses a problem due to the trade off 

relationship between sensitivity function and 

complementary sensitivity function [9]. 

The loop shaping is conceptually simple yet 

powerful design method in the frequency domain. 

The constraints of the loop phase near crossover 

frequency (stability requirements) complicate the 

loop shaping procedure considerably either for 

systems with RHP poles and zeros or for the multi 

input and multi out (MIMO) case. In the present 

work, PSS is designed by modifying the third 

technique based on the Glover–McFarlane H∞ loop 

shaping design procedure [3]. This method combines 

the advantages of loop shaping and H∞ control via 

normalized coprime factorization (NCF) approach. 

This design procedure follows the classical loop 

shaping principles in the choice of the control 

objectives, while the stability requirement is 

embedded into a special robust stability framework 

called NCF robust stability problem. In contrast to 

the classical loop shaping approach, the loop shaping 

is done without explicit regard to the nominal plant 

phase information. The present design is both simple 

and systematic in terms of design and weighting 

function selection. 

The Glover-McFarlane H∞ loop shaping design 

procedure [3], [1] consists of the following 3steps:  

a. Loop shaping: If G is the nominal plant and K is 

the controller, then using a pre-compensator W1 

and/or a post compensator W2, the singular values of 

the nominal plant are shaped to give a desired open-

loop shape. This step takes advantage of the 

conventional loop shaping technique, but no phase 

requirements need to be considered. That is, the 

closed-loop stability requirements are disregarded 

since the H∞ synthesis step taken thereafter will 

robustly stabilize the shaped plant. This ensures 

acceptable level of performance as well as stability 

in the face of perturbations. W1 is selected to keep 

the sensitivity  S = (I + GK)
−1

      (1) 

low at low frequencies such that       

 1SW
1

1 ≤
∞

− ,     (2) 

while W2 is selected to keep the complementary 

sensitivity  

  T = GK (I + GK)−1     (3) 

low at high frequencies such that  

 1TW 1
2 ≤

∞

− .       (4) 

This ensures acceptable level of performance as 

well as stability in the face of perturbations. The 

nominal plant G and shaping functions W1, W2 are 

combined to form shaped plant, Gs = W2 G W1. It is 

assumed that W1 and W2 are such that Gs contains no 

hidden modes. 

b. Robust Stabilization: It has been shown that the 

largest achievable stability margin εmax can be 

obtained by a non-iterative method [3], [10].  Here, 

εmax is the stability margin for the normalized co-

prime factor robust stability problem [10]. It 

provides a robust stability guarantee for the closed 

loop system. Suppose ss

~
,

~
NM , are normalized left co-

prime factors of sG  such that   s
1

ss

~~
NMG

−=        (6) 

then,   

2/1
2

ssmax

~~
1 







 −=
Η

NMe             (7) 

where, 
Η

.  denotes the Hankel norm. The controller 

is now defined by selecting ε < = εmax and then 

synthesizing a stabilizing controller K∞, which 

satisfies  ( ) 11
s

1
s

~ −

∞

−−
∞

∞

ε≤−Ι






Ι
MΚG

Κ
  (8) 

as shown in the Fig. 1a.   

w
1 G w

2

K

G
s

 

Fig.1a: Block diagram of the shaped plant & K∞ 

controller. 

∞
.   denotes the H∞ norm, which is the supermum of 

the largest singular value over all frequencies. If ε max 

<< 1, return to step (a) and adjust W1 and W2.  



c. The final feedback controller K is then 

constructed by combining the H∞ controller K∞ with 

the shaping functions W1 and W2 such that K = W1 

K∞W2, which is shown in the Fig. 1b. 

w
1

G

w
2K

K

 

Fig.1 b Final controller K = W1 K∞W2 

3.2 Design of R PSS for the multi-machine power 

system 
    The highlighted procedure is then applied to the 

multi-machine power system considered. 

A. Loop Shaping: The state matrix representation 

of the system is obtained. The Eigen values of this 

system correspond to the inter-area mode. The 

damping ratio of the system is computed. The system 

has poor damping at frequency 3.71 and 5.68 

rad/sec. The objective of loop shaping is to increase 

the open-loop gain around this frequency [1].  

Selection of W1: Pole and zero pairs are added to 

achieve gain increase in the desired frequency range 

while keeping the gain change as small as possible 

around other frequency values [1]. A washout filter 

block in W1 with time constant 15 sec. is used to 

ensure the controller only works in the transient state 

[6]. The selection of the pole at 1/0.2695 and the 

zero at 1/0.33 increased the gain around the 

frequencies of interest so that the plant input 

disturbance can be attenuated effectively. The 

resulting transfer function for the shaping function  

( )1761.01)s2695.01)(s151(

)s33.01(s15100
W1

+++

+××
= . 

Selection of W2: With W2 = 1, the open loop gain Gs 

= W2GW1 was very less and more over, the slope of 

the shaped plant was low at low frequencies. To 

increase the gain of the system at low frequency, 

three repeated zeros are added at frequency of 10 

rad/sec. To make W2 proper and to achieve proper 

slope of Gs at cross over frequency, three poles are 

added at insignificant frequency of 300 rad/sec. The 

reduced DC gain of W2 is compensated by using a 

constant of value of 10000 [1]. The resulting transfer 

function for the shaping function  

3

3

2
)300s(

)10s(10000
W

+

+×
= .   

The resulting singular value plot of the nominal 

system G, W1, W2 and Gs are as shown in Fig. 2. 

B. H∞ synthesis: Next, we synthesized a K∞ 

controller to achieve robust stability for the nominal 

plant. From the equation [ ]
2/1

2

ssmax

~~
1 






 −=

Η
NMe , the 

maximum stability margin is εmax = 0.2473. This 

margin evaluates the feasibility of our loop shaping 

design.  

 

According to McFarlane and Glover [3], [10], given 

the normalized left coprime factorization of the 

nominal plant as s
1

ss

~~
0

NMG
−= , the controller K∞ can 

stabilize all ( ) ( )Ν

−

Μ ∆+∆+= NMG
~~ 1

s  satisfying 

2473.0, <∆∆
∞

ΝΜ .  Furthermore, this controller 

stabilizes a gap ball of uncertainty with a given 

radius if and only if it stabilizes a normalized 

coprime factor perturbation ball of the same radius. 

Thus, in terms of the gap metric, all Gs with 

( ) 2473.0,
0ssg <δ GG  can be stabilized by this 

controller. 
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Fig.2 The singular value plot of G, W1, W2 and Gs 

C. The final controller K:  The final controller is 

the combination of W1 and W2 with K∞, that is K = 

W1 K∞ W2. This gives 10 controllers from 10 inputs 

to the output such as K (1, 1), K (1, 2) ….. K (1, 10). 

To find the best of the 10 controllers, Bode 

magnitude plot of each controller is compared with 

the Bode magnitude plot of general controller K. The 

controller whose Bode magnitude plot closely 

matches with the Bode magnitude plot of general 

controller is selected as the best controller. For the 

example considered, K (1, 9) matches with the 

general controller K as shown in Fig. 3. 
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Fig. 3 The singular value plot K and K(1, 9) 

D. Controller order reduction 
The designed controller is of a high order.  It is 

required to reduce it to a lower order for practical 

implementation purposes [11].   The controller is 

reduced to a 7th
 order using the Hankel norm 

reduction method. The transfer function of the 

reduced order controller is given as  























 +

=

1416214

311495667

1617217315

4145116976

10*9.807+ s 10*1.678 + s 10*2.047 +

s 10*9.754 + s10*2.349 + s10*3.205 + 2541s+s

 
10*1.146 + s10*9.426+ s10*1.312 + s10*7.403 

+ s10*1.452 s10*9.494 + s10*2.542 + s10*2.46

K
 

10
-6

10
-4

10
-2

10
0

10
2

10
4

-60

-40

-20

0

20

40

60

80

100

120

140
Singular Values

Frequency (rad/sec)

S
in

g
u

la
r 

V
a

lu
es

 (
d

B
)

Actual Controller

Reduced Order Controller

 
Fig.4 Bode plot of the actual and reduced order controller 

The bode plots of the full-order controller and the 

reduced-order controller are shown in Fig.4.  The 

reduced order controller exactly matches with the 

original controller at the frequencies of interest.  We 

note that the gain of the controller does not roll off 

rapidly at high frequencies. After adding the 

designed controller, the damping of the nominal 

closed-loop system has increased. This is 

implemented at generators 1, 5, 7, 8 and 9 as shown 

in Fig.19, shown in Appendix B. 

4. Simulation results 
Nonlinear simulations are performed using the 

developed Simulink model and comparisons are 

made w.r.t. the following 2 cases, viz, 

 (i)  With & without RPSS (without any fault). 

(ii)  Comparison of RPSS with CPSS (With fault). 

4.1 With & without RPSS (without any fault)  
Prior to application of fault, simulation is carried 

out with and without RPSS and without any fault i.e., 

under steady state condition. The simulation results 

of rotor angles and relative slip of all generators with 

respect to Centre of Inertia (COI) are plotted 

individually but results are shown only at few 

generators. The rotor angle and relative slip plots at 

other generators are similar hence are not shown 

here. 
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Fig.5 Rotor angle at generator 1   with and without RPSS 

under steady state 
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Fig.6 Relative slip at generator10 with and without RPSS 

under steady state 

Fig.5 shows the variation of rotor angle under 

steady state condition at the generator 1 whereas 

Fig.6 shows the variation of relative slip with respect 

to COI under steady state condition at generator10. 

From these plots it can be observed that the system is 

unstable under steady state condition which is 

justifiable as the system has two positive eigenvalues 

corresponding to swing modes M7 and M8, which 



can be seen from the Table 1. The system becomes 

stable with the addition of robust controller. The 

transients vanish within 2 to 3sec with the presence 

of RPSS. 

As the system is unstable without PSS under 

steady state condition, it will be highly unstable 

during fault and hence its performance is not 

compared without controller during fault. 

4.2 Comparison of RPSS with CPSS (With fault): 

Next, a three Phase to ground fault is created at a 

line connected between the buses 26 and 29 near bus 

no. 29 as shown in the Fig.20. The fault is initiated 

after 1 second and automatically cleared at the end of 

5 cycles.  The non-linear simulations are performed 

at different generators. The simulation results of 

RPSS are compared with CPSS and the response 

curves of rotor angle, slip and torque are observed at 

all the generators but only few results are shown here 

due to want of space. The details of CPSS are 

provided in the Appendix D. 
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Fig.7 Rotor angle of generator 3 with RPSS and CPSS 

with a three phase fault 
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Fig.8 Rotor angle of generator 9 with RPSS and CPSS 

with a three phase fault 
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Fig.9 Relative slip at generator 6 with RPSS and CPSS 

with a three phase fault 

The variations of rotor angles vs. time at 

generators, say, 3 & 9 are plotted randomly and are 

shown in the Fig.7 & Fig.8 respectively. The 

variation of relative slip vs. time at generator 6 is 

plotted and the same is shown in the Fig.9. Similarly 

the simulation result of electric torque at generator 9 

is shown in Fig.10. As shown in these plots, the 

proposed RPSS is able to damp out the oscillations 

consistently within 3 to 4 seconds after clearing the 

fault is cleared, while CPSS takes longer time to 

bring the system to steady state condition. This 

indicates the effectiveness of RPSS in providing the 

required damping to the system. 
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Fig.10 Electric torque at Generator 9 with RPSS and 

CPSS with a three phase fault 

4.3 Justification of Robustness 
For justification of robustness the following 

operating loads as three cases are considered. 

Case 1: 2.0 times the original loads.  

Case 2: 2.5 times the original loads and  

Case 3: 3.0 times the original loads.  

The Fig.11to  Fig.16 indicate the responses which 

are observed randomly at few generators when the 

system is subjected to the above faults considered as 

case 1, case 2 & case 3.   



0 2 4 6 8 10
-20

0

20

40

60

Time(sec)

R
o

to
r
 a

n
g

le
(d

e
g

)

With RPSS

 

 
Case 1

Case 2

Case 3

 
Fig.11 Rotor angle of generator3 with RPSS for three 

different operating points 
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Fig.12 Rotor angle of generator3 with CPSS for three 

different operating points 
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Fig.13 Relative Slip of generator 1 with RPSS for three 

different operating points 
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Fig.14 Relative Slip of generator 1 with CPSS for three 

different operating points 
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Fig.15 Electric torque of generator5 with RPSS for three 

different operating points 
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Fig.16 Electric torque of generator5 with CPSS for three 

different operating points 

Figs11, 13 and 15 show the variation of rotor 

angle at generator3, relative slip at generator1 and 

electric torque at generator5 respectively, for the 

three different operating points considered with 

RPSS, while Figs12, 14 and 16 show the variation of 

rotor angle at generator3, relative slip at generator1 

and electric torque at generator5 respectively, for 

exactly the same conditions with CPSS. From these 

plots, it can be clearly seen that in case of the system 

with RPSS, the settling time is consistently small and 

is almost independent of the operating point and the 

system is subjected to less oscillations, justifying 

robustness. In the case of the system with CPSS, the 

settling time varies inconsistently with the change in 

operating point and the system is subjected to large 

transients indicating the system fails to achieve 

robustness. 

 

5. Conclusions 

A systematic approach to design PSS using 

Glover-McFarlane H∞ loop shaping technique is 

presented for an IEEE 10 machine, 39 bus multi-

machine power system. A generalized Matlab 

program was developed for the multi-machine power 

system for calculation of initial conditions and a 

generalized Simulink model was developed for the 



integrated multi-machine power system.   

Non-linear simulations were performed for a 

period of 10 sec with & without RPSS model under 

steady state conditions.  Various performance 

characteristics such as the rotor angle, slip and 

electric torque were observed.  Comparisons of the 

performance characteristics were made with CPSS & 

with RPSS with a 3-phase to ground fault, to show 

that the transients die out very quickly with RPSS, 

while they exist for a longer duration with the CPSS. 

Robustness justification with RPSS was also dealt by 

showing that the settling time is independent of the 

operating point, while the settling time in case of 

CPSS varies depending upon the operating point, 

failing to achieve robustness.  

Simulations demonstrate the good damping 

performance of the designed RPSS, while the design 

procedure used is much simpler. Collectively, these 

results show that the RPSS provides better damping 

and robustness under fault conditions.  The above 

procedure can be applied to large multi-machine / 

intra-area power system to design the RPSS to take 

care of the intra-area oscillations under perturbed 

conditions.  

Also, the method developed in this paper can be 

used for power system stabilization & 

implementation in real time using dSPACE 

interfacing cards or DSP-TI Cards. 
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Appendix 

A. Equations of Multi-Machine Power System of 

the Model 1.1 

In multi-machine power system, each machine is 

expressed in its own d-q ref. frame which rotates 

with its rotor. For solving interconnecting network 

equations, all voltages and currents are expressed in 

a common reference frame rotating at synchronous 

speed (D-Q or Kron’s reference frame). Axes 

transformation equations are used to transform 

between individual machine (d-q) reference frames 

and the common (D-Q) reference frame. 

The equations of multi-machine power system 

corresponding to the Model 1.1 including saliency 

are given as follows [4]. Each parameter in these 



equations is a vector or matrix. 
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The rotor angle and speed with COI reference are 

given by 
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If transient saliency is considered, then the current 

equation can be expressed after transforming into D-

Q reference frame, we get   
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[ ]  Y
DQ

g is a function of δ and as δ varies with time t, 

it becomes a time varying matrix. Hence, special 

technique is required to handle transient saliency 

using two ways. 

1. Using a dependent source dcE′ such that  

( ) qdqdc ixxE ′−′−=′  

It can be shown that  
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2. Using a dummy rotor coil such that dcE′ is a state 

variable proportional to flux linkage of a dummy coil 

in the q-axis. The differential equation for dcE′  can 

be expressed as   
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  The load at a bus can be represented by the 
equivalent circuit shown in Figure 13 where the load 

admittance Yl is given by 2
L
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The network equations can be expressed using bus 

admittance matrix YN as 

[ ]  IVY NN
ˆˆ =  

Vl

Il

Yl
Il

 
Fig.17 Equivalent circuit representation of load 

Where V̂  is a vector of complex bus voltages. The 

generator and load equivalent circuits at all the buses 

can be integrated into the AC network and the 

overall system algebraic equations can be expressed 

as IVY ˆˆ][ =  

In D-Q reference frame this equation can be 

expressed as  

[ ] DQDQDQ IVY =     Where 
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where [ ] [ ] [ ] 1
IR

−
==+ YZZjZ and [ ]Y is the complex 

admittance matrix which is obtained by augmenting 

the bus admittance matrix YN by shunt admittance Yg 
of generator and load admittances at the generator  

and load buses Yl..  The elements of DQ
ijY , DQ

jV  and 

DQ
iI  can be expressed as  
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B. The Simulink Model 

The developed Simulink model of the IEEE 10 

machine, 39 bus multi-machine power system 

considered for designing RPSS using Glover 

McFarlane H∞ loop shaping technique and to study 

the control of power system oscillations, is shown in 

the Fig.18. The developed RPSS connected to 

generators 1, 5, 7, 8 and 9, through mux and demux 

is shown in Fig.19. 



 

Fig.18 The developed Simulink model of the multi-

machine power system represented by the Model 1.1 

including saliency with RPSS 
 

 
Fig.19 The developed RPSS connected to generators 1, 5, 

7, 8 and 9, through mux and demux. 

 

In Fig.18, multiple data corresponding to the 
number of generators or buses flow in each line. 

Selectors are used to tap the data corresponding to 

any generator or bus. The data related to rotor angle, 

relative slip and electric torque are connected to 

workspace and results are plotted using plot() 

function. The other parameters, if necessary, can be 

observed using scopes. 

C. The Data 

The single line diagram of 10-M/c, 39 bus multi-
machine power system [4] is shown in Fig.20. The 

machine data, excitation data, line data, load flow 

data and transformer data can be referred from [4]. 
 

 
Fig.20 Single line diagram of the 10-Machine, 39-bus 

Multimachine Power System 

D. The CPSS 
The schematic representation of Conventional 

Power System Stabilizer (CPSS) is as shown in the 

Fig.21. 
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Fig.21 Conventional Power System Stabilizer 

 

In the block diagram of the CPSS shown, the transfer 
function T(s) is finally obtained 

as
)1)(1(

)1)(1(
)(

42

31

sTsT

sTsTKs
sT

++

++
= . The designed 

parameters of CPSS for the system considered are 

10,3.0,75.0,15 21 ==== ws TsTsTK   Limits on 

Vs as .05.0&05.0 −+  

 


