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Abstract: High voltage insulators form an essential part of 
the high voltage electric power transmission systems. Any 
failure in the satisfactory performance of high voltage 
insulators will result in considerable loss of capital, as there 
are numerous industries that depend upon the availability of 
an uninterrupted power supply. The importance of the 
research on insulator pollution has been increased 
considerably with the rise of the voltage of transmission 
lines. In order to determine the flashover behavior of 
polluted high voltage insulators and to identify to physical 
mechanisms that govern this phenomenon, the researchers 
have been brought to establish a modeling. This paper 
describes the application of adaptive neuro-fuzzy inference 
system (ANFIS) model to estimate the critical flashover 
voltage (FOV) for polluted insulators, using experimental 
measurements carried out in an insulator test station 
according to the IEC norm and a mathematical model 
based on the characteristics of the insulator: the diameter, 
the height, the creepage distance, the form factor and the 
equivalent salt deposit density and estimates the critical 
flashover voltage. In order to train the network and to test 
its performance, the data sets are derived from experimental 
results obtained from the literature and a mathematical 
model. The obtained results are promising and insure that 
ANFIS techniques can estimate the critical flashover 
voltage for new designed insulators with different operating 
conditions and constitute an indispensable model that can 
be used in field simulations of various parameters for 
polluted insulators. 
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1. Introduction 
 Pollution flashover, observed on insulators used in 
high voltage transmission, is one of the most important 
problems for power transmission. Pollution flashover is 
a very complex problem due to several reasons such as 
modeling difficulties of the insulator complex shape, 
different pollution density at different regions, non-
homogenous pollution distribution on the surface of 
insulator, and unknown effect of humidity on the 
pollution. 
   Under severe environmental conditions, a pollution 

layer is deposited on the insulator surface. When the 
surface of a polluted high voltage insulator is 
dampened due to dew deposition, fog or rain, a wet 
conducting film is formed and a leakage current flows 
through the surface [1, 2]. The leakage current begins 
to dry the pollution layer and the resistivity of the layer 
rises in certain areas. 
    This leads to dry band formation, usually in the areas 
where the current density is highest. The dry band 
supports most of the applied voltage. The air gap 
flashes over, with the arc spanning the dry band gap 
which is in series with the wet portion of the insulator. 
The arc may extinguish at zero current and the 
insulator may return to working conditions. Dry band 
formation and rewetting may continue for many hours 
[3]. These arcs will burn in series with the wet surface 
resistance. If this resistance is sufficiently low, the 
partial arcs will elongate along the insulator profile and 
may eventually cause the full insulator flashover. In 
this way, the performance of a polluted insulator may 
be represented by the flashover voltage and the 
flashover current defined as the maximum leakage 
current magnitude immediately before flashover [4]. 
    Several researches concerning the insulators 
performance under pollution conditions have been 
conducted, in which mathematical or physical models 
have been used [5- 9], experiments have been 
conducted [10-12] or simulation programmes have 
been developed [13–15].  
    In recent years, a variety of prediction models have 
been proposed in the literature,  ANN artificial neural 
networks models are developed for the qualitative 
control of the insulators by determining important 
parameters (such as leakage current or the critical 
flashover voltage) [16–21], an adaptive neuro-fuzzy 
inference system (ANFIS) [22], least squares support 
vector machines (LS-SVM) [23-24].and fuzzy logic 
model [25] have been applied in order to estimate the 
critical flashover voltage on polluted insulators, 
additionally an multiple regression analysis has been 
used in order to prediction parameters of dimensioning 
of insulators under non-uniform contaminated 



 

 

conditions  [26]. Present paper focuses on prediction of 
the critical flashover voltage of polluted insulators by 
using an adaptive neuro-fuzzy inference system 
(ANFIS). 
 
2. Experimental measurements and data collection 
 Data concerning cap and pin type insulators was 
used for the training and testing of the ANFIS. 
Specifically, the following geometric characteristics 
were used as input variables: the maximum diameter 
Dm (in cm) of the insulator, its height H (in cm), the 
creepage distance on it L (in cm), its form factor F and 
the layer conductivity σs (in µS), while the output 
variable was the critical flashover voltage Uc (in kV). 
The dataset was built using data acquired from 
experiments and the application of a mathematical 
model. In particular, the experiments were carried out 
in an insulator test station installed in the High Voltage 
Laboratory of Public Power Corporation’s Testing, 
Research and Standards Center in Athens [27] 
according to the IEC standard 507:1991 [28]. 
Following the application of artificial pollution on the 
insulators, the critical flashover voltage was measured. 
This set of measurements was enriched by 
measurements from experiments performed by 
Sundararajan et al. [29] and Zhicheng and Renyu [30]. 
In addition, the mathematical model of an equivalent 
circuit for the evaluation of the critical flashover 
voltage presented by Topalis et al. [31] is used for the 
enlargement of the available dataset, the ANFIS is 
successfully implemented for the estimation of the 
critical flashover voltage of 24 artificially polluted 
insulators, whereas the training set is formed by 140 
vectors from the mathematical model [31] and other 
four experimental vectors (different from the test set). 
 
3. Mathematical model of the flashover process  
    Flashover modeling has been a topic of interest for 
many researchers [5, 32-34]. A major problem in all 
those investigations is the definition [35, 36] of the 
value of the arc constants that affect the flashover 
process. Unfortunately the values of the constants 
determined from several investigations diverge 
substantially.  
    This investigation targets the precise calculation of 
the arc value parameters, using relevant experimental 
results and close simulation of the insulator’s 
behaviour under polluted conditions using a suitable 
mathematical model [37].The flashover process over 
polluted insulators is described by well-known 
analytical equations, published by various scientists, 
mainly Boeme and Obenaus and Alston and 
Zoledziowski. These procedures have been used for the 
formulation of a mathematical model that permits 
determination of the parameters of the flashover under 
pollution of the insulators. The most known model for 
the explanation and evaluation of the flashover process 
[31, 34] of a polluted insulator consists of a partial arc 

spanning over a dry zone and the resistance of the 
pollution layer in series. Therefore, the voltage across 
the insulator will be: 
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where xAi-n is the stress in the arc and (L –x)rp I is the 
stress in the pollution layer. x is the length of the arc, L 
is the leakage path of the insulator in cm, rp is the 
resistance per unit length of the pollution layer, I is the 
leakage current and A and n are the arc constants. 
Their values  
 A = 124.8, n = 0.409 have been determined using a 
complex optimization method [38] based on genetic 
algorithms. It has been found experimentally that the 
value of the flashover voltage of a polluted insulator is 
not constant even under identical conditions. 
    This is mainly due to random arc phenomena on the 
polluted surface. Such phenomena are the arc bridging 
between sheds or ribs, the arc drifting away from the 
surface of an insulator as well as the number of 
consecutive arcs before flashover. These random arcs 
will certainly affect the flashover.  
    The measurement of the resistance rp of the wet 
zone is quite complicated. Therefore it may be 
substituted by the surface conductivity σS of the 
pollution layer: 
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F is the form factor of the insulator that is given as 
follows: 
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where D(l) is the diameter of the insulator that varies 
across  the leakage path. 
    For the equivalent salt deposit density C (ESDD) 
[3], the surface conductivity σS in Ω-1 is given by the 
following equation: 
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Where C is the equivalent salt deposit density in 
mg/cm2.  
The critical condition for propagation of the discharge 
along the surface of the insulator to cause flashover is 
[31]. 
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The voltage under this critical condition yields 
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Here the coefficient K was added to validate (1) at the 
critical instant of the flashover. Wilkins introduced this 
coefficient in order to modify the resistance rp of the 
pollution layer considering the current concentration at 
the arc foot point. A simplified formula for the 
calculation of K for cap-and-pin insulators is [2, 30]. 
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At the critical condition the length of the arc takes the 
value [34]. 
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Further analysis [31] of the system equations at the 
moment of flashover yields for the critical current 
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and for the critical voltage 
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where Dm is the maximum diameter of the insulator in 
cm. 
 
4. Adaptive Neuro-Fuzzy Inference System  
    Fuzzy logic and ANN are modeling methods used 
influ-entially and effectively in the problems of 
engineering. The modeling of fuzzy logic method is a 
rule-based method using the feature of human thinking 
and decision making. On the other hand, ANN learns 
the problem by using its ability of learning and comes 
through successfully for data sets it did not come across 
before. The method of ANFIS was suggested by Jang 
[39] in 1993 considering these advantages of ANN and 
fuzzy logic methods. The combination of fuzzy logic 
with architectural design of neural network led to 
creation of neuro-fuzzy systems which benefit from 
feed forward calculation of output and back-
propagation learning capability of neural networks, 
while keeping inter-pretability of a fuzzy system [40]. 
The Takagi-Sugeno-Kang (TSK) [41, 42] is a fuzzy 
system with crisp functions in consequent which 

perceived proper for complex applications. It has been 
proved that a TSK system could approximate every 
plant with convenient number of rules [39–42]. TSK 
systems are widely used in the form of neuro-fuzzy 
systems called ANFIS [39]. Because of crisp 
consequent functions, ANFIS uses a simple form of 
scaling implicitly. This adaptive network, ANFIS, has 
good ability and performance in system identification, 
prediction and control and has been applied in many 
different systems. The ANFIS combines the ability of 
neural network and fuzzy system. The training and 
updating of ANFIS parameters are the main problems. 
The training of this network in the antecedent part is 
more difficult than the conclusion part, because it must 
go through all layers which cause much calculation in 
Gradient Decent (GD) method. The most of the 
training methods in the antecedent part are based on 
gradient and calculation of gradient in each step is very 
difficult and chain rule must be used also may causes 
local minimum. 
   Both Neural Network (NN) and Fuzzy Logic (FL) are 
model-free estimators and share the common ability to 
cope with the uncertainties and noise. Both of them 
encode the information in a parallel and distribute 
architecture in a numerical framework. Hence, it is 
possible to convert fuzzy logic architecture to a neural 
network and vice-versa. This conversion makes it 
possible to combine the advantages of neural network 
and fuzzy logic. 
 
A.  Architecture of ANFIS 

   To present the ANFIS architecture, two fuzzy if–then 
rules based on a first-order Sugeno model are 
considered: 
 
Rule 1: If (x is A1) and (y is B1), then (f1= p1x+ q1y + r1) 
Rule 2 : If (x is A2) and (y is B2), then (f2 = p2x + q2y + r2) 
 

where x and y show the inputs of ANFIS system, Ai 
and Bi show the original fuzzy sets, pi, qi, and ri show 
the outcome parameters determined during training 
process. The structure of ANFIS architecture having 
two inputs, in which these two rules are applied in one 
output for Sugeno type fuzzy inference system, is 
shown in Fig.1. In Fig. 1, each circle indicates a fixed 
node and each square indicates an adaptive node. As 
seen in Fig.1, ANFIS includes 5 layers. The node 
function in each layer can be described as follows [39]: 
   Layer 1: First layer executes fuzzyfication process. 
Each i node in this layer is an adaptive node whose 
output is described below. 
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where x or y is the input of node, Ai or Bi-2 is a 
linguistic label related to this node. The output of node 



 

 

is calculated with membership functions given in (11) 
and (12). Various membership functions such as 
triangular, gaussian, and bell-shaped can be used for 
this. Frequently preferred [22] triangular function has 
been used in this study. 
    Layer 2: Each node in this layer is a fixed node 
labeled with M giving the multiplication of the signals 
coming to it as output. Any node function performing 
fuzzy AND process can be used in this layer. The 
outputs of this layer can be calculated as in the (13). 
 

( ) ( ),2
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    Layer 3: This layer is where membership functions 
are normalized. Each node in layer 3 is a fixed node 
labeled with N. The ith node calculates the ratio of the 
ith rules firing strength to the sum of all rule’s firing 
strengths. The output of each node in this layer is 
described with (14). 
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where wi describes the weight degree belonging to ith 
rule. 
    Layer 4: All nodes in this layer are adaptive nodes. 
The output of each node in this layer is simply the 
product of the normalized firing strength and a first 
order poly-nomial. Layer 4 is described with (15). 
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where iw  is the output of layer 3 and {pi, qi, ri} is the 

parameter set. 
    Layer 5: This layer consists of only one node and is 
labeled with the symbol S. This node performs the 
summation of all incoming signals. Hence, the overall 
output of the model is given by (16):  
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Fig.1. Architecture of typical ANFIS 

The ANFIS uses fuzzy MFs for splitting each input 
dimension. The input space is covered by MFs with 
overlapping that means several local regions can be 
activated simultaneously by a single input. Since 
simple local models are adopted in ANFIS model, the 
approximation ability of ANFIS will depend on the 
resolution of the input space partitioning, which is 
determined by the number of MFs in ANFIS and the 
number of layers. Four different types of MFs are used 
usually such as bell-shaped, Gaussian, trapezoidal and 
triangular type MFs with maximum equal to 1 and 
minimum equal to 0: 
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where {a, b, c, d, σ} are the parameters of MFs which 
are effected in shape of MFs.  
 
B. Learning algorithm                   

    Two types of learning algorithm are used for the 
determination of membership functions during the 
training of ANFIS. The first one is ‘‘Backpropagation 
Algorithm,’’ and the other is the algorithm known as 
‘‘hybrid algorithm’’ and in which ‘‘least squares’’ 
method and ‘‘gradient descent’’ method are used 
together.        Here, gradient descent method is used in 
the arrangement of non-linear input parameters and 
least squares method is used in the arrangement of non-
linear output parameters. It has been proven that this 
hybrid algorithm is highly efficient in training the 
ANFIS [39]. Table 1, summarizes the learning 
procedures performed for this network. 

Table 1. Two passes hybrid learning procedure of ANFIS 

 
 
 
 

 Forward pass Backward pass 
Premise parameters 

 

Fixed Gradient descent 
Consequent 
parameters 

Least-square 
estimator 

Fixed 

Signals Node outputs Error signals 



 

Assessment of the performance of ANFIS model is 
done by optimal values of Root Mean Square Error 
(RMSE), the RMSE is given as:  
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Where n is the number of data patterns in the data set, 
ypre,k indicates the predicted and ytes,k the testing value 
of one data point k. Moreover, several statistical 
methods, the Coefficient of determination (R

2
) and 

Mean Absolute Percentage Error (MAPE), are used to 
compare predicted and testing values for computing the 
model validation,    the R

2 
and MAPE parameters are 

calculated from: 
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where  
ktesy ,
 is the mean value of all data points. A very 

good fit yields an R
2
 value of one, whereas a poor fit 

results in a value near zero. 
    In order to avoid saturation phenomena during the 
training process of the ANFIS model, the input and 
output variable values are normalized. Through 
preliminary algorithm executions, normalization is 
chosen by the maximum and minimum values of the 
input and output data, as shown in the following type:  
 

minmax

min

yy

yy
y i

nor
−

−
=                  (25)   

                                          
where ymax and ymin are the upper and lower values of 
variable yi for the training set. 
 
5. Critical flashover voltage estimation using anfis  
    The developed ANFIS is applied for the critical 
flashover voltage estimation of polluted insulators.  
    The data from the mathematical model and a set of 
the experimental data are used to train the ANFIS 
model, while the rest of the experimental data was used 
to test its performance. The training set consists of 144 
patterns/vectors (of which140 vectors are derived from 
the model and 4 vectors are real values), and the 

ANFIS model is tested using 24 patterns (experimental 
data). 
In order to get a good performance for ANFIS, all of 
the used data sets for both training and test stages were 
selected as randomly, the ANFIS model was 
constructed in MATLAB and has been trained with 
several MATLAB training functions. 
 
Results and discussion 
    There are many parameters one can select to obtain 
better results in ANFIS. For the most common case, 
these parameters are: the number and type of 
membership function for each input, the output 
membership function type (either ‘linear’ or 
‘constant’), the training epoch number, the training 
error goal, the initial step size, the step size decrease 
rate and the step size increase rate. In addition to the 
parameter selection one can also ensure that 
appropriate test data are used to detect over fitting of 
the training data set. The test data have the same format 
as the training data. Over fitting can be detected when 
the test error (difference between the measured and 
predicted outputs) starts increasing while the testing 
error is still decreasing. 
    Initially the system was developed with different 
types of Membership Functions (MFs) like Triangular-
shaped built-in membership function (trimf), Gaussian 
curve built-in membership function (gaussmf), 
Generalized bell-shaped built-in membership function 
(gbellmf) each MFs was tested with two linguist 
variables (2[High Low] 3[High Medium Low] to each 
inputs. The ANFIS model was trained by hybrid 
learning algorithm. 
The detailed simulated results obtained by the 
developed ANFIS model for predicting the critical 
flashover voltage of polluted insulators was tabulated 
in Table 2. 
    According to Table 2, the Triangular-shaped built 
(trimf) with 2 MFs is the best architecture model to 
predict the critical flashover voltage, because it gives 
lowest MAPE value (3.9789%) and highest R

2 
value 

(0.9843) during the testing process. 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using selected data from within the series of the 
training pattern, the results of the tested ANFIS were 
compared the computed results using the mathematical 
model is shown in Fig.2. 
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Fig. 2. The performance of ANFIS model for Training 

 

The comparison between the predicted data and Test 
data was then made to evaluate the model prediction 
performance is shown in Fig.3, and the correlation 
between estimated and Actual values of Uc for the 
testing set was illustrated in Fig. 4. 
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Fig. 3. The performance of ANFIS model for Testing. 
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Fig.4. Correlation between estimated and Actual values of 

Uc for the testing set 

 

    The corresponding Root Mean Square Error 
(RMSE), the Coefficient of determination (R

2
) and 

Mean Absolute Percentage Error (MAPE) values for 
this comparison are given in Table 3. In addition, the 
performance of the ANFIS model was compared with 
the previous results given in Ref. [18, 25] for the 
testing set. This was carried out under the following 
conditions: Data normalized = No, number of MFs = 2, 
type of MFs = triangular (low and high), initial step 
size = 0.05, step size decrease rate = 0.6, step increase 
rate = 1.6, maximum number of epochs = 5851 epochs, 
learning type = hybrid method, the output MF type = 
linear. 

Table 3.  Performance comparison in terms of statistical 
model validation parameters 

 
 
 
 
 
 

Type of 

 mf 

No 

of  

MF 

Step-size Data 

normalized 

No 

Epoch 

RMSEtr RMSETest R2
tr R2

test MAPEtr MAPEtest 

gbellmf 

 

2 

2 

3 

3 

0.05/0.6/1.6 

0.001/0.2/1.6 

0.05/0.6/1.6 

0.05/0.6/1.6 

No 

Yas 

No 

Yas 

300 

300 

30 

30 

0.0319 

0.0045 

0.0340 

0.0297 

0.7429 

0.0258 

3.8157 

0.0988 

1.0000 

0.9996 

1.0000 

0.9836 

0.9727 

0.9792 

0.3656 

0.7131 

0.2023 

1.1716 

0.2072 

6.6400 

4.8474 

21.2116 

16.9346 

42.9010 

Gaussmf 

 

2 

2 

3 

3 

0.05/0.6/1.6 

0.001/0.9/1.1 

0.05/0.6/1.6 

0.01/0.9/1.1 

No 

Yas 

No 

Yas 

300 

300 

30 

30 

0.1339 

0.0115 

0.1002 

0.0115 

0.8566 

0.0295 

4.0142 

0.0875 

0.9995 

0.9975 

0.9997 

0.9975 

0.9638 

0.9729 

0.3223 

0.7722 

0.8296 

5.1022 

0.5748 

3.6811 

5.8731 

29.2391 

15.4005 

39.3295 

trimf 

 

2 

2 

3 

3 

0.05/0.6/1.6 

0.001/0.9/1.1 

0.05/0.6/1.6 

0.001/0.9/1.1 

No 

Yas 

No 

Yas 

300 

300 

30 

30 

0.2426 

0.0214 

0.0655 

0.0125 

0.5641 

0.0522 

1.4512 

0.0426 

0.9983 

0.9914 

0.9999 

0.9971 

0.9843 

0.9153 

0.8982 

0.9437 

1.6915 

6.8294 

0.3775 

4.9279 

3.9789 

28.3971 

7.3165 

58.7402 

trapmf 2 

2 

3 

3 

0.05/0.6/1.6 

0.0009/0.9/1.1 

0.001/0.6/1.6 

0.001/0.9/1.1 

No 

Yas 

No 

Yas 

63 

300 

30 

30 

0.5447 

0.0106 

0.4000 

0.0097 

1.0781 

0.0394 

4.5075 

0.0439 

0.9912 

0.9979 

0.9953 

0.9983 

0.9439 

0.9524 

0.2163 

0.9415 

3.5478 

5.0512 

2.0979 

2.7408 

7.3286 

27.2888 

21.3876 

23.0487 

Models Rtr
2 RMSEtest MAPEtest Rtes

2 

ANFIS 0.9989 0.4766 3.5185 0.9888 
ANN [18] 0.9972 - 3.84 0.9853 

FL [25] 0.9840 - - 0.9670 

Table 2. Statistical indices for performance assessment of the different types of ANFIS models: 

 



 

Conclusion 
    A methodology for the prediction of the critical 
flashover voltage of polluted insulators using ANFIS 
model was presented, in this paper ANFIS model is 
developed by getting the relationship between critical 
flashover voltage (FOV) and input variables, such as 
insulator height, insulator diameter, leakage length of 
the insulator, form factor and the layer conductivity, In 
order to train the ANFIS structure, four different MFs 
were used, the triangular MFs is the best to predict 
flashover voltage, choosing the number of MFs for 
each input reflects the complexity of ANFIS for 
choosing parameters, However when the number of 
MFs for each input is increased superior to two MFs 
the training stage is more time-consuming procedure 
[22].  
    The performance of the developed model was 
justified by root mean square error, coefficient of 
determination (R

2
) and Mean Absolute Percentage 

Error (MAPE). The respective results are quite 
acceptable and superior compared to artificial neural 
network optimization methodology model [18], and a 
fuzzy logic optimization methodology model [25].  
    The ANFIS could also be applied in various types of 
insulators with higher accuracy than the mathematical 
model by changing the data set. 
 
Appendix 
    Values that were used in the mathematical model for 
the calculation of the flashover voltage and 
experimental results were given in Tables 4 and 5, 
respectively. The flashover voltage was calculated with 
the aid of mathematical model in Eq. (1) using the data 
given in Table 4 and the following values for the 
equivalent salt deposit density C (in mg/cm2): {0.02, 
0.03, 0.04, 0.05, 0.06, 0.13, 0.16, 0.23, 0.28, 0.34,0.37, 
0.49, 0.52, 0.55}. The experimental data are also given 
in Table 5. 

Table 4. Values that were used in the mathematical model 

 
 
 
 
 
 
 

 
 
 

Table 5. Experimental values 
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