

Short-term load Forecast Based on Neuro-evolution Algorithm
A.TIGUERCHA A.A.LADJICI M.BOUDOUR

University of Sciences and Technology Houari-Boumediene, Algiers, Algeria
Laboratory of Industrial and Electrical Systems (LSEI), atiguercha@usthb.dz,

Abstract: Load forecasting is an important tool in power
system planning, operation and control. Load forecasting
ensures the equilibrium between consumption and
production and, so, helps in maintaining system stability,
and optimal operation of the electricity market.
Neuroevolution leverage the strengths of two biologically
inspired areas of machine learning: artificial neural net
works and evolutionary algorithms. The basic idea of
Neuro-evolution algorithm is to search the space of neural
network policies directly using an evolutionary algorithm,
and find the best structure possible for the task at hand.
Neuro-evolution can, therefore, improve the effectiveness of
Neural Network by optimizing its structure in terms of
complexity and efficiency using the optimization capabilities
of evolutionary algorithms. The current paper presents a
short-term load forecasting methodology, based on neuro-
evolution algorithm. A comparative study is conducted
between NE and two of the most used machine learning
algorithms, artificial neural network (ANN), and Support
Vector Regression (SVR).

Key words: Short term load forecasting, Neuro-evolution
Algorithm, Forecasting Methods

1. Introduction.
 As a matter of fact, the electricity market has been
privatized and restructured in many countries around
the world. The main reason for such a change lies in
the expectation that competition could lead to a
reduction in electricity prices and could stimulate the
emergence of new technologies. However, the prices
consider ably higher than marginal prices have been
observed because of the emergence of strategic
behavior and the volatility of load in market where the
load is stochastic and not known in advance [1,2].
 Electricity markets are becoming more
sophisticated and load forecasting is gaining
importance for market participants to adjust their bids
in the day-ahead Electricity market. The knowledge of
next day load, is very important to a producer (or a
consumer) in a competitive market. Knowing the next
day load, leads to a better price forecasting and better
generation and consumption scheduling [3,4].Load
forecast is made by extrapolating the past load data
while taking into account the effect of weather
(temperature and humidity) and time events (workdays,
holly-days and special events). The relationship
between load and these factors is complex, nonlinear
[5] and needs specialized tools.

Several interpolation and regression techniques have
been proposed and applied to load and price
forecasting problems. Those techniques include

regression models (ARIMA, SARIMA and GARCH),
statistical models and supervised learning algorithms
(SVM and artificial neural networks).

Authors In [6], develop an ARIMA and transfer
function models applied to the short-term load
forecasting by considering weather-load relationship in
Taiwan power system.

Authors in [7], performs a comparison study
between the results of the three methods: ANN, NFIS
and a new stochastic model (called REGARIMA). In
[8] the authors made a comparative analysis technique
between a Support Vector Machines method and
hybrid system that combines the low level of
computational neural networks with the high level in
the reasoning ability of fuzzy systems.[5] develop a
technique based on Neural Network and Rough Set to
solve very short-term load forecasting problem, a
support vector regression is used to made a
comparative study on load forecasting technologies for
different geographical distributed loads and in order to
reduce the error of load forecasting [9]used an hybrid
method based on Fuzzy Logic method and Artificial
Neural Network.

In [10] authors develop genetic algorithm (GA)
based support vector machine (SVM) forecasting
model with deterministic annealing (DA) clustering,
SVM parameters are optimized through genetic
algorithms, which were used in SVM model. The
current paper aims to develop a technique applied to
Short Term load forecasting (STLF) using a neuro-
evolution (NE) approache. The NE used in this work,
is a neural network trained by a coevolutionary
algorithm in order to find the best topology of the
neural network. As a validation, the obtained results
are compared with those of an SVR and ANN using
the MATLAB NFTOOL Toolbox.

2. Load forecasting methods.

Load forecasting problem can be divided into three
categories: Short-term forecast: this is usually from one
hour to a week, medium forecast which is from a week
to a year and Long-term forecast longer than a year.

The current paper focuses on short-term load
forecasting that gives the load forecast for one day
ahead to one week ahead. Such forecast gives valuable
information to the System Operator (ISO) and helps to
maintaining stability and controlling market, thus
leading to better system reliability.

In this work, three load forecasting methods are
developed:

 2

• Conventional Artificial Neuron Network (ANN)
• Suport vector Regression (SVR)
• Neuroevolution Algorithm (NE)

2.1 Artificial Neural Networks.
 Neural network is a massively parallel distributed
processor that has a natural propensity for storing
experiential knowledge and making it available for use
[11]. Neural network offers the potential to overcome
the reliance on a functional form of a forecasting
model. The main advantage here is that most of the
forecasting methods seen in the literature do not
require a load model. However, training usually takes a
lot of time. ANNs have been integrated with several
other techniques to improve their accuracy. [12].

Neuron Network mimics the brain in two main
aspects:

• Knowledge is acquired by the network
through learning process.
• Inter neuron connection strengths known as
synaptic weights are used to store the
knowledge.

The figure 1 presents a typical multi-layer neural
network work-flow. An elementary neuron with P
inputs is shown below. Each input is weighted with an
appropriate w. The sum of the weighted inputs and the
bias forms the input to the transfer function f of the
hidden layer. Neurons can use any differentiable
transfer function f to generate their output. The Neural
network Outputs are weighted sum of the outputs of
the hidden layer neurons.

(,) ()
0

n
A x f bxi ijj ii

ω ω= +∑
=

 (1)

Fig.1 Neural network architecture

To be applied to a specified task, neural networks
are trained, so that a particular input leads to a specific
target output. The network is trained based on a
comparison of the outputs and the targets, until the

network output matches the target. Neural networks
have been trained to perform complex functions in
various fields, including pattern recognition,
identification, classification, speech, vision, and control
systems.

The neural network is provided with a correct
answer (output) for every input. Weights are
determined to allow the network to produce answers as
close as possible to the target. The error depends on the
weights, and we need to adjust the weights in order to
minimize the error which is given by:

 2
(, ,) (,)()x d x dj j jE Oω ω −= (2)

With: Oj is the Activation function of neuron j After
that we use a gradient descent method to adjust the
weight.
2.2 Support Vector Machines.

Support Vector Machines (SVM) are a learning
systems that use a hypothesis space of linear functions
in a high dimensional feature space, trained with a
learning algorithm from optimization theory that
implements a learning bias derived from statistical
learning theory [13]. This learning methodology
introduced by Vapnik has been proven to be very
powerful and had outperformed most other machine
learning paradigms in a variety of applications [14],
and [17].

SVMs were originally designed for classifications
problems; they can also be applied to regression
problems by the introduction of the concept of loss
functions [15, 16]. In Support Vector Regression
(SVR), we have to define a function f(x) that has at
most Ɛ deviation from the actually obtained target yi for
all the training data and in the same time as flat as
possible. Flatness in this case means to reduce the
model complexity by minimizing ǁ (w) ǁ2 so we can
write:

21
min () ()

2
w wΦ = (3)

With the constraints:

()

()

t

i i

t

i

y w x b

w x b

ϕ ε

ϕ ε

− − ≤

− ≤
 (4)

This means, we do not care about errors as long as

they are less than Ɛ, but will not accept any deviation
larger than this. To be more realistic, one can add slack
variables *, , 1,...,i i i Nξ ξ = , to cope with otherwise
infeasible constraints of the optimization problem (3);
hence we arrive at the formulation stated below:

2 *

1

1
min (,) () ()

2

N

i i
i

w w Cξ ξ ξ
=

Φ = + +∑ (5)

Subject to:

*

*

()

()

, 0

t

i i i

t

i i i

i i

y w x b

w x b y

ϕ ε ξ

ϕ ε ξ

ξ ξ

− − ≤ −

+ − ≤ +

≥
 (6)

Where, C is a positive constant as regularization
parameter. The optimization formulation can be
transformed into a dual problem:

* *

*

1 1

1
min () () () ()()

2

() ()

T
i i i j i i

N N

i i i i
i i

x x

y y

α α ϕ ϕ α α

α ε α ε
= =

Φ = − −

− + + +∑ ∑
(7)

By introducing the kernel trick we can write:

* *

* *

1 1

1
min () () (,)()

2

() ()

i i i j i i

N N

i i i i i
i i

K x x

y

α α α α

α α α α ε
= =

Φ = − −

− − + +∑ ∑
 (8)

With constraints:

*

*

1

0 , , 1,...,

() 0

i i

N

i i

i

C i Nα α

α α
=

≤ ≤ =

− =∑ (9)

Solving the problem with corresponding constraints

determines Lagrange multipliers, and the regression
function is given by:

*

*

0 ,

1

() () (,)

1
(((,) (,))

2

i i

i i i
C

N

i r i s
i

f x K x b

where

b K x x K x x

α α

α α α
≤ ≤

=

= − +

= −

∑

∑

 (10)

The vector alpha is called support vector and is

defined by solving the problem stated in (8) and (9)
using a quadratic programming optimization, b is the
bias and y = f(x) are the output. SVM are trained in
batch mode: in the first phase: the user have to define a
set of inputs x and outputs y and solve (8) and (9) to
find the support vector. In a second phase, the user
provides a new set of inputs and the outputs are
calculated using (10).

2.3 Neuro-evolution.

The basic idea of neuro-evolution algorithm is to

search the space of neural network policies directly by
using an evolutionary algorithm. Therefore, a NE
combines the learning capability of a neuron network
with the global optimization capabilities of
evolutionary algorithms. Figure 2 shows a typical NE
Algorithm based on ANN and Evolutionary strategies
algorithm.

Fig.2 Neuro-Evolution Algorithm.

There are two mostly known architectures of NE,

Symbiotic adaptive neuro-evolution (SANE) [18] and
neuro-evolution of Augmented Topologies (NEAT).

In SANE, neurons compete on the basis of how
well, on average, the networks in which they
participate perform. A high average fitness means that
the neuron contributes to forming successful networks
and, consequently, suggests that it cooperates well with
other neurons. Over time, neurons will evolve that
result in good networks. The system breaks the
problem down to that of finding the solution to smaller,
interacting sub-problems.

The NEAT method is classified as a Topology and
Weight Evolving Artificial Neural Networks
(TWEANN), which are used in combination with
evolutionary algorithms and neural networks in order to
evolve weights and topologies [19-22].

3. Cooperative co-evolution approach neuro-

evolution.
This section provides detailed implementation of the

proposed neuro-evolution algorithm, where a NN is
trained by a cooperative co-evolutionary algorithm
(CCEA) in order to perform a good forecasting
performance.

3.1 Cooperative co-evolutionary algorithm.

Cooperative co-evolutionary algorithms (CCEA) are
evolutionary algorithm, where, instead of evolving a
single population, several populations co-evolve
simultaneously [23]. The most common definition of
Co-evolutionary Algorithms, in the community of
Evolutionary Computation, refers to an algorithm in
which two populations or more are evolved using an
Evolutionary Algorithm and in which individual fitness

 4

depends on interaction with individuals of other
populations.

In CCEA the optimization problem is explicitly
decomposed into simpler sub-problems, and assigns
each sub-problem to a population. Save for evaluation,
each population evolve independently of one another.
Therefore, an individual of a particular population
represents only a component of a potential solution;
collaborators are selected, randomly, from the other
population to represent the remaining components of a
solution [24].

In the same way as in traditional evolutionary
algorithms, individuals of each population have to be
reproduced and evaluated and the fittest individuals are
selected to be part of the next generation. The main
difference is that in CCEA, individuals of one
population have to be evaluated against his
collaborators.

Special care must be taken when applying CCEA to
train a neuron network:

� Representation: the functionality of
each population is different from another.
The first population acts as input layer, the
second as hidden layer and the third as an
output layer:

– In the input layer: to inputs
coded as a two columns real
valued vector.
– The hidden layer a one column
real valued vector.
– The output layer a one column
real valued vector.

� Reproduction: to each individual a
crossover and mutation are applied

� Evaluation: each individual is
evaluated against a set of evaluators
according to equation (11) or (12)

� Selection: the most fitted individuals
of each population are selected to be part
of the next generation.

The main difference between conventional EA and
CCEA resides on the process of evaluation, depending
on the set of evaluators the objective function may be
evaluated many times [24]. The evaluation of an
individual is taken as the average value of the whole of
the interactions of this individual with the whole of his
evaluators.

() () () ()()1

1

1
(11)

q
K K N

i i K N i
i

Fit a F P a ,...P a ,...,P a
q =

= ∑

The simplest manner to carry out the evaluation is to

choose the ’best’ individual of each population:

() () () ()()1

1

1
(12)

q
K K N

i best K N best
i

Fit a F P a ,...P a ,...,P a
q =

= ∑

A typical cooperative co-evolution algorithm can be
represented as follow:

Algorithm 1: Co-evolutionary Cooperative
algorithms

4. Experimental studies.

 To test the effectiveness of the proposed method in
this work we used the hourly load data weather
conditions collected in 2002 from New England power
system archive, Figure 3, 4 and 5 respectively show the
annual curve Load in MW, weekly curve load and
three similar days of the same month load.

 Short term load forecasting mainly depends on
the following conditions:

- Days’ load
- Day temperature.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

4

Hour of the year (Hrs)

Lo
ad

 in
 M

W

Fig.3 Annual Loads Curve

0 20 40 60 80 100 120 140 160 180
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

4

Hours of the days (Hrs)

Lo
ad

 in
 M

W

Fig.4 Weekly Loads Curve

0 5 10 15 20 25
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

4

Hour of the day (Hrs)

Lo
ad

 in
 M

W

Load for Three Similare days

day1

day2
day3

Fig.5 Three Similar Days Loads Curve

The architecture of the neural network used in this
work is with 02 inputs, a hidden layer of 10 neurons
and one output. The inputs are previous load and actual
temperature, the output (forecast load). The training
procedure is done by finding an optimal set of W in
order to minimize the error between the forecast load
and the actual load.

The ANN is trained using Matlab toolbox

NSTOOL, the NE is trained using the proposed co-
evolutionary algorithm. The SVM is trained by finding
the support vector alpha; alpha_ which are calculated
as a solution to the quadratic programming problem
defined by equation (7) and (8).

We perform simulations for two cases.
Case 1: In the first case we compared three methods:

Neuro Evolution, Support Vector Machines and Neural
Network to training ours algorithms we use data from
three similar days of the same month to predict the next
two days so the inputs parameters are the loads and
temperatures for each hour of the day and the load as
target.
 Figures 6 and 7 respectively show the target,
forecasted load and also the percentage error in the
forecasted load for the data calculated in the three
similar days with Neuro Evolution Approach.

0 5 10 15 20 25 30 35 40 45 50
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Hour of the day (Hrs)

Lo
ad

 in
 M

W

target

forecast

Fig.6 Forecast and Target with Neuro Evolution

Approach

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Hour of the day(Hrs)

P
er

ce
nt

ag
e

er
ro

r
(%

)

Fig.7 Percentage Error with Neuro Evolution

Approach

 The simulation based on Neuro Evolution gives the
maximum percentage error 4.74% and the mean error
2.29%.

 6

 Figures 8 and 9 give the results obtained with
Support Vector Machines (SVM) approach.

0 5 10 15 20 25 30 35 40 45 50
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Hour of the day(Hrs)

Lo
ad

 in
 M

W

target

forecast

Fig.8 Forecast and Target with SVM Approach

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Hour of the day(Hrs)

P
er

ce
nt

ag
e

er
ro

r
(%

)

Fig.9 Percentage Error with SVM Approach

 The simulation based on SVM gives the
maximum percentage error 7.98% and the mean error
3.28%.

 Figures 10 and 11 gives the results obtained
with Neural Network approach using NSTOOL
MTLAB Neural Network Tool Box.

0 2 4 6 8 10 12 14
10

-5

10
-4

10
-3

10
-2

10
-1

Best Validation Performance is 0.00025094 at epoch 8

M
ea

n
 S

q
u

ar
ed

 E
rr

o
r

 (m
se

)

14 Epochs

Train

Validation
Test

Best

Fig. 10 Validation Performance of Neural Network

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Response of Output Element 1 for Time-Series 1

O
u

tp
u

t a
n

d
 T

ar
g

et

5 10 15 20 25 30 35 40 45 50
-0.05

0

0.05

E
rr

o
r

Time

Training Targets

Training Outputs
Validation Targets
Validation Outputs

Test Targets

Test Outputs
Errors

Response

Targets - Outputs

Fig.11 Forecast, Target and Percentage Error with

Neural Network Approach
 The forecasting results obtained from the

proposed methods in terms of mean absolute
percentage error and max absolute percentage error, we
can conclude that the both approaches Neuro Evolution
and Neural Network are better than Support Vector
Machine, if we compare the results in this case
between Neuro Evolution and Neural Network
approach are very close, so we perform a second case
concerned only NE and NN.

Case 2: In the second one we made a comparison
between a Neuro Evolution and Neural Network
methods so to training ours algorithms we use data
from two weeks to predict the next week so the inputs
parameters is temperatures for each hour of the two
weeks and the load as target.

 Figures 12 and 13 respectively show the target,
forecasted load and also the percentage error in the
forecasted load for the data calculated in the week with
Neuro-evolution Approach, with 10 neurons in the
hidden layer.

0 20 40 60 80 100 120 140 160 180
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Hour of the days (Hrs)

Lo
ad

 in
 M

W

Target

Forecast

Fig.12 Forecast and Target with Neuro-evolution

Approach

0 20 40 60 80 100 120 140 160 180
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Hours of the days (Hrs)

P
er

ce
nt

ag
e

er
ro

r
(%

)

Fig.13 Percentage Error with Neuro Evolution

Approach
 Figures 14,15 and 16 shows the target,

forecasted load and also the percentage error in the
forecasted load for the data calculated in the week with
Neural Network Approach, with 10,20 and 50 neurons
in the hidden layer.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Response of Output Element 1 for Time-Series 1

O
u

tp
u

t a
n

d
 T

ar
g

et

20 40 60 80 100 120 140
-0.5

0

0.5

E
rr

o
r

Time

Targets

Outputs
Errors

Response

Targets - Outputs

Fig.14 Forecast, Target and Percentage Error with

Neural Network Approach for 10 neurons

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Response of Output Element 1 for Time-Series 1

O
u

tp
u

t a
n

d
 T

ar
g

et

20 40 60 80 100 120 140
-0.5

0

0.5

E
rr

o
r

Time

Targets

Outputs
Errors

Response

Targets - Outputs

Fig.15 Forecast, Target and Percentage Error with

Neural Network Approach for 20 neurons

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Response of Output Element 1 for Time-Series 1

O
u

tp
u

t a
n

d
 T

ar
g

et

20 40 60 80 100 120 140
-0.5

0

0.5

E
rr

o
r

Time

Targets

Outputs
Errors

Response

Targets - Outputs

Fig.16 Forecast, Target and Percentage Error with

Neural Network Approach for 50 neurons

5 Conclusions
 This paper presents a neuro-evolution algorithm

for short-term load forecasting problem. To test the
effectiveness of the proposed neuro-evolutionary
algorithm, we use the hourly data of the aggregate load
and weather condition collected in 2002 from New
England power system and its performance is
compared to ANN and SVR. Using those data, two
cases study are designed: in the first case, a day-ahead
load forecasting is tested, the algorithms are trained
with data of the three previous similar days to forecast
the next day.

In this case, the neuro-evolution approach is found
to be the most efficient with a mean error of 2:9% and
a max error of 4:74%. In the second case, a week-
ahead load forecasting is tested, the algorithms are
trained with data of the two previous weeks to forecast
the next week. By comparing the results obtained by
the NN and the NE, we found that, again, the neuro-
evolution approach is the most efficient with a mean
error of 3:9% and a max error of 14%.

Performance of neuro-evolution, in this application,
outperform neural network. this demonstrates that NE
has better generalization than ANN. Indeed, changing
forecast period from a day to a week does not affect,
drastically, the performance of neuro-evolution (the
same NE architecture is used in both cases). The loss of
neural network performance suggest that the used
training algorithm cannot find an optimal set of
weights, which explains the decrease in performance
when the number of neurons increased to 20 neurons
instead of 10 neurons, figure (15).

This behavior is not surprising, knowing the
optimization performance of co-evolutionary
algorithms. Neuro-evolution captures the most
interesting features of both neural network and co-
evolutionary algorithms: learning and global
optimization, which makes them suited for demanding
applications.

References

 8

[1] A. Ladjici, A. Tiguercha, M. Boudour, Nash
equilibrium in a two settlement electricity market using
competitive coevolutionary algorithms, International
Journal of Electrical Power and Energy Systems, vol.
57, no. 0,pp. 148 – 155, 2014.

[2] A. Tiguercha, A. Ladjici, M. Boudour, Suppliers’

optimal biding strategies in day-ahead electricity
market using competitive coevolutionary algorithms,
3rd International Conference in Systems and Control
(ICSC), 2013 on, pp. 821–826, Oct 2013.

[3] Z. H. Osman, M. L. Awad, T. K. Mahmoud, Neural

network based approach for short-term load
forecasting, in Power Systems Conference and
Exposition, 2009. PSCE’09. IEEE/PES, pp. 1–8, IEEE,
2009.

[4] R.G. Bertrand, A. J. Conejo, Electricity market

equilibrium model with constraints involving prices, in
International Conference on Mathematical and
Statistical Modeling in Honor of Enrique Castillo
(ICMSM), Ciudad Real (Spain), pp. 28–30, 2006.

[5] P. R. Campbell, K. Adamson, Methodologies for load

forecasting, in Intelligent Systems, 2006 3rd
International IEEE Conference on, pp. 800– 806, IEEE,
2006.

[6] M. Cho, J. Hwang, C.S. Chen, Customer short term

load forecasting by using arima transfer function
model, in Energy Management and Power Delivery,
1995. Proceedings of EMPD ’95. 1995 International
Conference on, vol. 1, pp. 317–322 vol.1, Nov 1995.

[7] M. M. Ismail, M. Hassan, Artificial neural network

based approach compared with stochastic modelling
for electrical load forecasting, in Modelling,
Identification & Control (ICMIC), 2013 Proceedings of
International Conference on, pp. 112–118, IEEE, 2013.

[8] A. Escobar, L. Perez, Application of support vector

machines and anfis to the short-term load forecasting,
in Transmission and Distribution Conference and
Exposition: Latin America, 2008 IEEE/PES, pp. 1–5,
IEEE, 2008.

[9] S. Sachdeva, C. M. Verma, Load forecasting using

fuzzy methods, in Power System Technology and IEEE
Power India Conference, 2008. POWERCON 2008.
Joint International Conference on, pp. 1–4, IEEE, 2008.

[10] W. Sun, A novel hybrid GA based SVM short term load

forecasting model, in Knowledge Acquisition and

Modeling, 2009. KAM’09. Second International
Symposium on, vol. 2, pp. 227–229, IEEE, 2009.

[11] S. S. Haykin, Neural networks and learning machines,
vol. 3. Pearson Education Upper Saddle River, 2009.

[12] P. Bunnoon, Mid-term load forecasting based on
neural network algorithm: Comparison of models,
International Journal of Computer and Electrical
Engineering, vol. 3, no. 4, pp. 600–605, 2011.

[13] N. Cristianini, J. Shawe-Taylor, An introduction to
support vector machines and other kernel-based
learning methods, Cambridge university press, 2000.

[14] I. Steinwart, A. Christmann, Support vector machine,
Springer, 2008.

[15] D.f. ZHAO, M. Wang, J.s. ZHANG, X.f. WANG, A
support vector machine approach for short term load
forecasting , Proceedings of the Csee, vol. 4, p. 004,
2002.

[16] X. Pan, B. Lee, A comparison of support vector
machines and artificial neural networks for mid-term
load forecasting, in Industrial Technology (ICIT), 2012
IEEE International Conference on, pp. 95–101, IEEE,
2012.

[17] A. Reyaz, Y.Q. Zhang, R. W. Harrison, Granular
decision tree and evolutionary neural SVM for protein
secondary structure prediction, International Journal of
Computational Intelligence Systems, vol. 2, no. 4, pp.
343–352, 2009.

[18] D. E. Moriarty, R. Mikkulainen, Efficient reinforcement
learning through symbiotic evolution, Machine
learning, vol. 22, no. 1-3, pp. 11–32, 1996.

[19] D. Polani, R. Miikkulainen, Fast reinforcement
learning through eugenic neuro-evolution, University
of Texas at Austin, Austin, TX, 1999.

[20] K. Allen, P. Ballen, Evolving grounded communication
in a navigation task using neat, 2012.

[21] A. G. Pereira, A. Petry, Data assimilation using neuro-
evolution of augmenting topologies, in Neural
Networks (IJCNN), The 2012 International Joint
Conference on, pp. 1–6, IEEE, 2012.

[22] K. O. Stanley, D. B. D’Ambrosio, J. Gauci, A
hypercube-based encoding for evolving large-scale
neural networks, Artificial life, vol. 15, no. 2, pp. 185–
212, 2009.

[23] A. Karsaz, H. R. Mashhadi, R. Eshraghnia, Cooperative
co-evolutionary approach to electricity load and price
forecasting in deregulated electricity markets, in
Power India Conference, 2006 IEEE, pp. 6–pp, IEEE,
2006.

[24] R. P. Wiegand, An analysis of cooperative
coevolutionary algorithms, PhD thesis, Citeseer, 2003.

