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Abstract: Load forecasting is an important tool in power 
system planning, operation and control. Load forecasting 
ensures the equilibrium between consumption and 
production and, so, helps in maintaining system stability, 
and optimal operation of the electricity market. 
Neuroevolution leverage the strengths of two biologically 
inspired areas of machine learning: artificial neural net 
works and evolutionary algorithms. The basic idea of 
Neuro-evolution algorithm is to search the space of neural 
network policies directly using an evolutionary algorithm, 
and find the best structure possible for the task at hand. 
Neuro-evolution can, therefore, improve the effectiveness of 
Neural Network by optimizing its structure in terms of 
complexity and efficiency using the optimization capabilities 
of evolutionary algorithms. The current paper presents a 
short-term load forecasting methodology, based on neuro-
evolution algorithm. A comparative study is conducted 
between NE and two of the most used machine learning 
algorithms, artificial neural network (ANN), and Support 
Vector Regression (SVR). 
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1. Introduction. 
 As a matter of fact, the electricity market has been 
privatized and restructured in many countries around 
the world. The main reason for such a change lies in 
the expectation that competition could lead to a 
reduction in electricity prices and could stimulate the 
emergence of new technologies. However, the prices 
consider ably higher than marginal prices have been 
observed because of the emergence of strategic 
behavior and the volatility of load in market where the 
load is stochastic and not known in advance [1,2]. 
      Electricity markets are becoming more 
sophisticated and load forecasting is gaining 
importance for market participants to adjust their bids 
in the day-ahead Electricity market. The knowledge of 
next day load, is very important to a producer (or a 
consumer) in a competitive market. Knowing the next 
day load, leads to a better price forecasting and better 
generation and consumption scheduling [3,4].Load 
forecast is made by extrapolating the past load data 
while taking into account the effect of weather 
(temperature and humidity) and time events (workdays, 
holly-days and special events). The relationship 
between load and these factors is complex, nonlinear 
[5] and needs specialized tools. 

Several interpolation and regression techniques have 
been proposed and applied to load and price 
forecasting problems. Those techniques include 

regression models (ARIMA, SARIMA and GARCH), 
statistical models and supervised learning algorithms 
(SVM and artificial neural networks). 

Authors In [6], develop an ARIMA and transfer 
function models applied to the short-term load 
forecasting by considering weather-load relationship in 
Taiwan power system. 

Authors in [7], performs a comparison study 
between the results of the three methods: ANN, NFIS 
and a new stochastic model (called REGARIMA). In 
[8] the authors made a comparative analysis technique 
between a Support Vector Machines method and 
hybrid system that combines the low level of 
computational neural networks with the high level in 
the reasoning ability of fuzzy systems.[5] develop a 
technique based on Neural Network and Rough Set to 
solve very short-term load forecasting problem, a 
support vector regression is used to made a 
comparative study on load forecasting technologies for 
different geographical distributed loads and in order to 
reduce the error of load forecasting [9]used an hybrid 
method based on Fuzzy Logic method and Artificial 
Neural Network. 

In [10] authors develop genetic algorithm (GA) 
based support vector machine (SVM) forecasting 
model with deterministic annealing (DA) clustering, 
SVM parameters are optimized through genetic 
algorithms, which were used in SVM model. The 
current paper aims to develop a technique applied to 
Short Term load forecasting (STLF) using a neuro-
evolution (NE) approache. The NE used in this work, 
is a neural network trained by a coevolutionary 
algorithm in order to find the best topology of the 
neural network. As a validation, the obtained results 
are compared with those of an SVR and ANN using 
the MATLAB NFTOOL Toolbox. 
 
2. Load forecasting methods. 

Load forecasting problem can be divided into three 
categories: Short-term forecast: this is usually from one 
hour to a week, medium forecast which is from a week 
to a year and Long-term forecast longer than a year. 

The current paper focuses on short-term load 
forecasting that gives the load forecast for one day 
ahead to one week ahead. Such forecast gives valuable 
information to the System Operator (ISO) and helps to 
maintaining stability and controlling market, thus 
leading to better system reliability. 

In this work, three load forecasting methods are 
developed: 
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• Conventional Artificial Neuron Network (ANN) 
• Suport vector Regression (SVR) 
• Neuroevolution Algorithm (NE) 
 
2.1 Artificial Neural Networks. 
 Neural network is a massively parallel distributed 
processor that has a natural propensity for storing 
experiential knowledge and making it available for use 
[11]. Neural network offers the potential to overcome 
the reliance on a functional form of a forecasting 
model. The main advantage here is that most of the 
forecasting methods seen in the literature do not 
require a load model. However, training usually takes a 
lot of time. ANNs have been integrated with several 
other techniques to improve their accuracy. [12]. 

Neuron Network mimics the brain in two main 
aspects: 

• Knowledge is acquired by the network 
through learning process. 
• Inter neuron connection strengths known as 
synaptic weights are used to store the 
knowledge. 

The figure 1 presents a typical multi-layer neural 
network work-flow. An elementary neuron with P 
inputs is shown below. Each input is weighted with an 
appropriate w. The sum of the weighted inputs and the 
bias forms the input to the transfer function f of the 
hidden layer. Neurons can use any differentiable 
transfer function f to generate their output. The Neural 
network Outputs are weighted sum of the outputs of 
the hidden layer neurons. 
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Fig.1 Neural network architecture 
 

To be applied to a specified task, neural networks 
are trained, so that a particular input leads to a specific 
target output. The network is trained based on a 
comparison of the outputs and the targets, until the 

network output matches the target. Neural networks 
have been trained to perform complex functions in 
various fields, including pattern recognition, 
identification, classification, speech, vision, and control 
systems. 

The neural network is provided with a correct 
answer (output) for every input. Weights are 
determined to allow the network to produce answers as 
close as possible to the target. The error depends on the 
weights, and we need to adjust the weights in order to 
minimize the error which is given by: 
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With: Oj is the Activation function of neuron j After 
that we use a gradient descent method to adjust the 
weight. 
2.2 Support Vector Machines. 

Support Vector Machines (SVM) are a learning 
systems that use a hypothesis space of linear functions 
in a high dimensional feature space, trained with a 
learning algorithm from optimization theory that 
implements a learning bias derived from statistical 
learning theory [13]. This learning methodology 
introduced by Vapnik has been proven to be very 
powerful and had outperformed most other machine 
learning paradigms in a variety of applications [14], 
and [17]. 

SVMs were originally designed for classifications 
problems; they can also be applied to regression 
problems by the introduction of the concept of loss 
functions [15, 16]. In Support Vector Regression 
(SVR), we have to define a function f(x) that has at 
most Ɛ deviation from the actually obtained target yi for 
all the training data and in the same time as flat as 
possible. Flatness in this case means to reduce the 
model complexity by minimizing ǁ (w) ǁ2 so we can 
write: 
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This means, we do not care about errors as long as 

they are less than Ɛ, but will not accept any deviation 
larger than this. To be more realistic, one can add slack 
variables *, , 1,...,i i i Nξ ξ = , to cope with otherwise 
infeasible constraints of the optimization problem (3); 
hence we arrive at the formulation stated below: 
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Where, C is a positive constant as regularization 
parameter. The optimization formulation can be 
transformed into a dual problem: 
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By introducing the kernel trick we can write: 
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With constraints: 
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Solving the problem with corresponding constraints 

determines Lagrange multipliers, and the regression 
function is given by: 
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The vector alpha is called support vector and is 

defined by solving the problem stated in (8) and (9) 
using a quadratic programming optimization, b is the 
bias and y = f(x) are the output. SVM are trained in 
batch mode: in the first phase: the user have to define a 
set of inputs x and outputs y and solve (8) and (9) to 
find the support vector. In a second phase, the user 
provides a new set of inputs and the outputs are 
calculated using (10). 
 
 
2.3 Neuro-evolution. 

The basic idea of neuro-evolution algorithm is to 

search the space of neural network policies directly by 
using an evolutionary algorithm. Therefore, a NE 
combines the learning capability of a neuron network 
with the global optimization capabilities of 
evolutionary algorithms. Figure 2 shows a typical NE 
Algorithm based on ANN and Evolutionary strategies 
algorithm. 

 
Fig.2 Neuro-Evolution Algorithm. 

 
There are two mostly known architectures of NE, 

Symbiotic adaptive neuro-evolution (SANE) [18] and 
neuro-evolution of Augmented Topologies (NEAT). 

In SANE, neurons compete on the basis of how 
well, on average, the networks in which they 
participate perform. A high average fitness means that 
the neuron contributes to forming successful networks 
and, consequently, suggests that it cooperates well with 
other neurons. Over time, neurons will evolve that 
result in good networks. The system breaks the 
problem down to that of finding the solution to smaller, 
interacting sub-problems. 

The NEAT method is classified as a Topology and 
Weight Evolving Artificial Neural Networks 
(TWEANN), which are used in combination with 
evolutionary algorithms and neural networks in order to 
evolve weights and topologies [19-22]. 

 
3. Cooperative co-evolution approach neuro-

evolution. 
This section provides detailed implementation of the 

proposed neuro-evolution algorithm, where a NN is 
trained by a cooperative co-evolutionary algorithm 
(CCEA) in order to perform a good forecasting 
performance. 
 
3.1 Cooperative co-evolutionary algorithm. 

Cooperative co-evolutionary algorithms (CCEA) are 
evolutionary algorithm, where, instead of evolving a 
single population, several populations co-evolve 
simultaneously [23]. The most common definition of 
Co-evolutionary Algorithms, in the community of 
Evolutionary Computation, refers to an algorithm in 
which two populations or more are evolved using an 
Evolutionary Algorithm and in which individual fitness 
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depends on interaction with individuals of other 
populations. 

In CCEA the optimization problem is explicitly 
decomposed into simpler sub-problems, and assigns 
each sub-problem to a population. Save for evaluation, 
each population evolve independently of one another. 
Therefore, an individual of a particular population 
represents only a component of a potential solution; 
collaborators are selected, randomly, from the other 
population to represent the remaining components of a 
solution [24]. 

In the same way as in traditional evolutionary 
algorithms, individuals of each population have to be 
reproduced and evaluated and the fittest individuals are 
selected to be part of the next generation. The main 
difference is that in CCEA, individuals of one 
population have to be evaluated against his 
collaborators. 

Special care must be taken when applying CCEA to 
train a neuron network: 

� Representation: the functionality of 
each population is different from another. 
The first population acts as input layer, the 
second as hidden layer and the third as an 
output layer: 

– In the input layer: to inputs 
coded as a two columns real 
valued vector. 
– The hidden layer a one column 
real valued vector. 
– The output layer a one column 
real valued vector. 

�  Reproduction: to each individual a 
crossover and mutation are applied 

� Evaluation: each individual is 
evaluated against a set of evaluators 
according to equation (11) or (12) 

� Selection: the most fitted individuals 
of each population are selected to be part 
of the next generation. 

The main difference between conventional EA and 
CCEA resides on the process of evaluation, depending 
on the set of evaluators the objective function may be 
evaluated many times [24]. The evaluation of an 
individual is taken as the average value of the whole of 
the interactions of this individual with the whole of his 
evaluators. 
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The simplest manner to carry out the evaluation is to 

choose the ’best’ individual of each population: 
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A typical cooperative co-evolution algorithm can be 
represented as follow: 
 

Algorithm 1: Co-evolutionary Cooperative 
algorithms 
 

 
 

 
 
 
4. Experimental studies.  

  To test the effectiveness of the proposed method in 
this work we used the hourly load data weather 
conditions  collected in 2002 from New England power 
system archive, Figure 3, 4 and 5 respectively show the 
annual curve Load in MW, weekly curve load and 
three similar days of the same month load. 

      Short term load forecasting mainly depends on 
the following conditions:    

- Days’ load 
- Day temperature. 
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Fig.3 Annual Loads Curve 
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Fig.4 Weekly Loads Curve 
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Fig.5 Three Similar Days Loads Curve 

The architecture of the neural network used in this 
work is with 02 inputs, a hidden layer of 10 neurons 
and one output. The inputs are previous load and actual 
temperature, the output (forecast load).  The training 
procedure is done by finding an optimal set of W in 
order to minimize the error between the forecast load 
and the actual load. 

The ANN is trained using Matlab toolbox 

NSTOOL, the NE is trained using the proposed co-
evolutionary algorithm. The SVM is trained by finding 
the support vector alpha; alpha_ which are calculated 
as a solution to the quadratic programming problem 
defined by equation (7) and (8). 

We perform simulations for two cases.  
Case 1: In the first case we compared three methods: 

Neuro Evolution, Support Vector Machines and Neural 
Network to training ours algorithms we use data from 
three similar days of the same month to predict the next 
two days so the inputs parameters are the loads and 
temperatures for each hour of the day and the load as 
target. 
     Figures 6 and 7 respectively show the target, 
forecasted load and also the percentage error in the 
forecasted load for the data calculated in the three 
similar days with Neuro Evolution Approach.  
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Fig.6 Forecast and Target with Neuro Evolution 

Approach 
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Fig.7 Percentage Error with Neuro Evolution 

Approach 
 

     The simulation based on Neuro Evolution gives the 
maximum percentage error 4.74% and the mean error 
2.29%. 
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       Figures 8 and 9 give the results obtained with 
Support Vector Machines (SVM) approach. 

0 5 10 15 20 25 30 35 40 45 50
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Hour of the day(Hrs)

Lo
ad

 in
 M

W

 

 

target

forecast

 
Fig.8 Forecast and Target with SVM Approach 
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Fig.9 Percentage Error with SVM Approach 

      The simulation based on SVM gives the 
maximum percentage error 7.98% and the mean error 
3.28%. 

       Figures 10 and 11 gives the results obtained 
with Neural Network approach using NSTOOL 
MTLAB Neural Network Tool Box. 
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Fig. 10 Validation Performance of Neural Network 
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Fig.11 Forecast, Target and Percentage Error with 

Neural Network Approach 
       The forecasting results obtained from the 

proposed methods in terms of mean absolute 
percentage error and max absolute percentage error, we 
can conclude that the both approaches Neuro Evolution 
and Neural Network are better than Support Vector 
Machine, if we compare the results in this case 
between Neuro Evolution and Neural Network 
approach are very close, so we perform a second case 
concerned only NE and NN. 

Case 2:  In the second one we made a comparison 
between a Neuro Evolution and Neural Network 
methods so to training ours algorithms we use data 
from two weeks to predict the next week so the inputs 
parameters is temperatures for each hour of the two 
weeks and the load as target. 

      Figures 12 and 13 respectively show the target, 
forecasted load and also the percentage error in the 
forecasted load for the data calculated in the week with 
Neuro-evolution Approach, with 10 neurons in the 
hidden layer. 
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Fig.12 Forecast and Target with Neuro-evolution 

Approach 
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Fig.13 Percentage Error with Neuro Evolution 

Approach 
      Figures 14,15 and 16  shows the target, 

forecasted load and also the percentage error in the 
forecasted load for the data calculated in the week with 
Neural Network Approach, with 10,20 and 50 neurons 
in the hidden layer. 
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Fig.14 Forecast, Target and Percentage Error with 

Neural Network Approach for 10 neurons 
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Fig.15 Forecast, Target and Percentage Error with 

Neural Network Approach for 20 neurons 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Response of Output Element 1 for Time-Series 1

O
u

tp
u

t a
n

d
 T

ar
g

et

 

 

20 40 60 80 100 120 140
-0.5

0

0.5

E
rr

o
r

Time

 

 

Targets

Outputs
Errors

Response

Targets - Outputs

 
Fig.16 Forecast, Target and Percentage Error with 

Neural Network Approach for 50 neurons 
 

5 Conclusions 
      This paper presents a neuro-evolution algorithm 

for short-term load forecasting problem. To test the 
effectiveness of the proposed neuro-evolutionary 
algorithm, we use the hourly data of the aggregate load 
and weather condition collected in 2002 from New 
England power system and its performance is 
compared to ANN and SVR. Using those data, two 
cases study are designed: in the first case, a day-ahead 
load forecasting is tested, the algorithms are trained 
with data of the three previous similar days to forecast 
the next day.  

In this case, the neuro-evolution approach is found 
to be the most efficient with a mean error of 2:9% and 
a max error of 4:74%. In the second case, a week-
ahead load forecasting is tested, the algorithms are 
trained with data of the two previous weeks to forecast 
the next week. By comparing the results obtained by 
the NN and the NE, we found that, again, the neuro-
evolution approach is the most efficient with a mean 
error of 3:9% and a max error of 14%. 

Performance of neuro-evolution, in this application, 
outperform neural network. this demonstrates that NE 
has better generalization than ANN. Indeed, changing 
forecast period from a day to a week does not affect, 
drastically, the performance of neuro-evolution (the 
same NE architecture is used in both cases). The loss of 
neural network performance suggest that the used 
training algorithm cannot find an optimal set of 
weights, which explains the decrease in performance 
when the number of neurons increased to 20 neurons 
instead of 10 neurons, figure (15). 

This behavior is not surprising, knowing the 
optimization performance of co-evolutionary 
algorithms. Neuro-evolution captures the most 
interesting features of both neural network and co-
evolutionary algorithms: learning and global 
optimization, which makes them suited for demanding 
applications. 
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