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Abstract: The aim of this work is to demonstrate the 
usefulness of Particle Swarm Optimization (PSO) for 
tracking Maximum Power Point (MPP) in stand-alone 
photovoltaic system. Maximum Power Point Tracking 
(MPPT) is one of approaches which boost efficiency of 
Photovoltaic (PV) cells by the load matching between the PV 
cells and the load. The idea is to optimize and implement a 
Fuzzy Logic Controller (FLC) based on a maximum power 
point tracking method for a PV system.. A hardware 
prototype of the maximum power point tracking controller 
was also implemented using  a dSPACE DS1104 digital 
signal processor (DSP) based real-time data acquisition 
control (DAC) system. The digital experimental results 
confirm the accuracy of the adopted control strategy as well 
as the better tracking efficiency and rapid response under all 
weather conditions. 
 
Key words: Real-time PV emulation, Maximum power point 
tracking (MPPT), Fuzzy logic controller (FLC), Particle 
Swarm Optimization (PSO), dSPACE DS1104. 
 
 
1. Introduction.  
    Photovoltaic (PV) cells are an attractive source of 

energy. Abundant and ubiquitous, this source is one of 

the important renewable energy sources that have been 

increasing worldwide year by year. The International 

Energy Agency (IEA) estimates that by 2050, 

photovoltaic will provide around 11% of global 

electricity production [1]. Generally, these systems are 

used today in several applications which can be 

classified into three main classes: the stand-alone PV 

systems [2], the grid connected PV systems [3, 4] and 

the hybrid systems [5]. In specialized applications and 

in remote areas, the stand-alone PV systems are used 

with an energy storage device which is typically 

implemented as battery bank, but other solutions exist 

including fuel cells. On the other hand, to answer the 

growing need for alternative energies, the grid 

connected PV systems are used. Hybrid power systems 

combine solar photovoltaic systems with another kind 

of generated energy (wind, tidal, thermal,...).  

However, in order to extract maximum power from 
a PV panel and to make the PV generation efficient, a 
capable maximum power point tracking (MPPT) 
technique is required to predict and to track the 

Maximum Power Point (MPP) at all environmental 
circumstances and then force the photovoltaic system 
to run at that MPP point, which is a DC-DC converter 
associated with the control unit, is usually connected 
between the photovoltaic panel and the load [6-8]. 
Usually, the MPPT controller is associated with a DC–
DC or DC–AC power converters. However, the energy 
delivered by the photovoltaic panels depends on a 
complex equation relating the solar radiation and the 
temperature which leads to a non-linear output power, 
which makes tracking of maximum power point 
sometimes, be a challenging task. Various MPPT 
techniques had been proposed by researches to 
improve the efficiency of PV systems in recent years 
such as distributed MPPT, such as hill climbing [9], 
perturb and observe (P and O) technique [10], 
incremental conductance technique [11] and ANFIS 
based algorithm [12].  

The most used MPPT techniques in renewable 
energy systems is the fuzzy logic controller [13]. Due 
to their heuristic nature associated with simplicity and 
effectiveness, for both linear and non-linear systems, 
fuzzy logic controller (FLC) methods have showed 
their salient features in implementations for MPP 
seeking [14-18].For example, a survey of the most 
used MPPT methods is presented by [14], who have 
shown that the use of FLC is more suitable to track the 
MPP compared to conventional controllers because 
they produce a better performance under all weather 
conditions. These results have also revealed that a PV 
system based upon the proposed controller can reach a 
power efficiency of about 99%. However, in spite of 
the good results provided by all the aforementioned 
works, all have one common drawback in the design of 
the FLC employed, which was done according to the 
trial-and-error method rather than a guided approach. 
These difficulties encountered in the design of fuzzy 
controllers have guided researchers towards the use of 
Evolutionary Algorithms (EAs) techniques because of 
their overall exploration characteristic in a complex 
environment.  

In this paper, the EA technique used is the Particle 
Swarm Optimization (PSO) To provide a way of 
surmounting this shortcoming, [19] choose the Particle 
Swarm Optimization algorithm tool to optimize the FLC 



 

of their MPP tracker. They applied PSOs to calculate 
accurately the base lengths and the peak locations of 
the membership functions in the FLC for which the 
rule-base have already been created. The proposed 
solution leads to a good performance improvement of 
the MPP tracker addressed. In similar approach, the 
authors in [20] have proposed to optimize and to 
design an FLC by PSO algorithm for obtaining 
maximum power from solar panel based on MPPT 
method. The proposed approach shows better results 
for the extreme environmental conditions. 

In this article, the fuzzy logic controller based as 
MPPT optimized by PSO algorithm (fuzzy MPPT -
PSO) is used in stand-alone PV system as a control 
algorithm. Afterwards, the practically proposed system 
is investigated with an Elgar 5500 programmable DC 
power supply is used to emulate the PV BP SX150S 
panel, and a DC-DC boost power converter. The 
procedure followed makes the design of this type of 
MPP tracker simpler and more efficient.  

Additionally, a software implementation of the 
designed FLC on general purpose computer cannot be 
considered as a suitable design solution for this type of 
application, especially when it has to be used as MPPT 
controller for standalone PV systems installed in 
remote rural areas. To realize prototypes and to test the 
control strategies of energy conversion systems, the 
tendency of researches now is to employ digital 
implementation which provides more efficiency over 
their analogue equivalents. Traditionally, the FLC was 
usually implemented in microcontrollers [21, 22]. 
There are also other implementations in the field-
programmable gate array (FPGA) chips [23-25]. For 
example, in [26] deal the digital implementation of a 
fuzzy logic controller on a Xilinx reconfigurable 
FPGA. The simulation results obtained with ModelSim 
Xilinx Edition-III show satisfactory results. However, 
the technological development of Digital Processing 
Boards (DSP) with fast computing capability and 
simplicity in programming makes it a solution for 
numerical implementation of more complex control 
algorithms. This paper gives the implementation details 
of a stand-alone PV system control algorithm based 
dSPACE platform. 

The remainder of the paper is organized as follows:  
In section 2, the PV system description is presented. 
The particle swarm optimization algorithm is detail in 
section 3. Experimental results are described in detail 
in section 4. Finally, a general conclusion is given in 
section 5. 

2. System description 
The structure of the studied stand-alone PV system 

is developed under Matlab/Simulink environment.  

2.1. PV panel modeling 
The PV panel is composed of 72 multi-crystalline 

silicon PV cells connected in series. For modeling 
purposes, the equivalent electrical circuit of a PV cell 
using a single diode model is presented in Fig. 1. The 

most commonly used expression of the output current 
Ipv and output voltage Vpv of a PV panel with Ns cells in 

series can be described by Eq. (1) which describes the 
current–voltage characteristics of a PV panel [28]. 

𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑅𝑝
                                                        (1) 

where,   𝐼𝑑 = 𝐼0 (exp (
𝑉𝑝𝑣+𝑅𝑠𝐼𝑝𝑣
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where,  Iph is the light generated PV current,  

 I0 is the reverse saturation current,  

 α is the diode ideality factor,  

 k is the Boltzmann constant,  

 T is the Kelvin temperature of the cell (K),  

 q is the electron’s charge,  

 Rs and Rp are the series and parallel equivalent 

 resistances, 

 Ns is the number of cells in series, 
 𝐼𝑟𝑠 is the reverse saturation current at 𝑇, 

 𝐸g is the bandgap energy of semiconductor 

 used in the solar cell, 

             𝑇𝑟 is the cell reference temperature. 

 

Fig. 1. Single diode model of solar cell. 

The main electrical parameters of BP SX150S panel 

used are summarized in Table 1. 

Table 1 

Parameters of BP SX150S panel. 

 

2.2. Control of DC-DC Boost Converter 
Fig. 2 presents the structure of the DC-DC boost 
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Parameters of BP SX150S panel. 1 

  Electrical characteristics  BP SX150S 2 

  Maximum power (𝑃𝑀𝑃𝑃 )  150 W 3 
  Voltage at 𝑃𝑀𝑃𝑃  (𝑉𝑚𝑎𝑥 )  34.5 V 4 
  Current at 𝑃𝑀𝑃𝑃  (𝐼𝑚𝑎𝑥 )  4.35 A 5 
  Short circuit current (𝐼𝑠𝑐 )   4.75 A 6 
  Open circuit voltage (𝑉𝑜𝑐 )   43.5 V 7 
  Temperature coefficient of 𝐼𝑠𝑐    0.0065%/°C  8 
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converter used to increase the PV output voltage 

supplying the resistive load. The IGBT power switch 

modulates the power transfer from the input source to 

the load using the pulse width modulation (PWM) 

technique generated by the high frequency controlling 

device. A 8 kHz PWM signal generated by a 

controlling device is injected to the converter's switch 

S. 

The duty cycle D of this PWM signal is adjusted in 

real time to perform a maximum power point tracking 

in order to extract the maximum power from the PV 

panel.  In the case of a continuous conduction mode, 

the relationship between the average values of the input 

and output voltages is defined as follows [29]: 

 

𝑉𝑜 =
1

1 − 𝐷
𝑉𝑖                                                              (2) 

where, Vi  and Vo are respectively the voltages at 

the input and the output of the PV panel. 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Basic electrical circuit of a DC-DC boost 
converter and its operating mode. 

 

2.3. Fuzzy MPPT Control   
Recently fuzzy logic controllers (FLCs) have been 

introduced in the tracking of the MPP in PV 
conversion systems. In this section it is not intended to 
give the theoretical background information about 
fuzzy logic; we will just give the necessary concepts 
that will allow the understanding of the analysis that 
follows. Unlike conventional control, which is based 
on mathematical model of a system, a FLC embeds the 
intuition and experience of a human operator. This is a 
great advantage since with the increasing complexity 
of systems; the ability to describe them mathematically 
becomes difficult. In this control approach, the control 
action is expressed with linguistic rules in the form of:  
IF a set of conditions are satisfied, THEN a set of 
consequences are inferred. Generally, as shows in    

Fig. 3, a conventional fuzzy logic controller contains 
four main components [30]. 

 

 
Fig. 3. Algorithm structure of fuzzy controller. 

The fuzzification interface converts the numerical 

values of real variables into fuzzy variables. The two 

controller’s inputs are an error e(k) and an change of 

error ∆𝑒(𝑘). These input variables are a set of 

membership functions such as Negative Big (NB), 

Negative Small (NS), Zero (ZE), Positive Small (PS) 

and Positive Big (PB). The shapes of membership 

functions associated to linguistic variables that we 

used are linear functions of trapezoidal and triangular 

type. At a sampling instant k, the controller's inputs 

are defined by the following equations: 

 

𝑒(𝑘) =
𝑃(𝑘) − 𝑃(𝑘 − 1)

𝑉(𝑘) − 𝑉(𝑘 − 1)
                                               (3) 

∆𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1)                                              (4) 

where, 𝑃(𝑘) is the output power of PV panel and  𝑉(𝑘) 

is the terminal voltage of PV panel.  

In this paper, we use five fuzzy sets for the input 

variables (e, ∆e) nominated {NB, NS, ZE, PS, PB}. 

The forms of the membership functions associated to 

these input variables are trapezoidal and triangular 

linear functions. The partitioning of these membership 

functions of the fuzzy subsets is defined by 5 

parameters, in example {e1, e2, e3, e4, e5} as shown in 

Fig. 4. 

 

 

 

 

Fig. 4. Membership functions of FLC input. 

Table 2 shows the rule table of a fuzzy logic 

controller with two inputs (e,∆e). This table can be 

seen as a 5x5 matrix. The matrix rows represent the 

five fuzzy sets of the error; the matrix columns depict 

the five fuzzy sets of the error’s variation. Matrix cells 

represent the fuzzy sets outputs which are denoted as 1, 

Fig. 5 shows the main components of Mamdani type fuzzy logic controller [26]. 1 

 2 

 3 

 4 

 5 

 6 

 7 

Fig. 5.   Algorithm structure of fuzzy controller. 8 
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2, 3, 4 and 5 for NB, NS, ZE, PS and PB respectively. 

It is noted that the rules base defines the controller's 

behavior and it requires user knowledge to form the all 

fuzzy rules. For example, the rule given by the black 

cell of Table 2 is interpreted as follows:    

If 𝑒 is Positive Big (PB) and ∆𝑒 is Zero (ZE) then ∆𝐷𝑁 

is Negative Big (NB). 

where, ΔDN  is the normalized incremental change of the 

duty cycle D.  

Table 2.   

Rule base table for computation ∆𝐷𝑁 . 

 

The defuzzification interface converts the resulting 

fuzzy output from the fuzzy inference mechanism into 

a numerical output ΔDN. The shapes of membership 

functions associated to controller’s output that we used 

are linear functions of singleton membership type. The 

controller’s output will supply a signal to control the 

duty-cycle of power converter in order to track the 

MPP. 

In this paper, we use five fuzzy sets for the output 

variable (ΔDN) nominated {NB, NS, ZE, PS, PB}. The 

forms of the membership functions associated to this 

output variable are singleton functions. The 

partitioning of these membership functions of the fuzzy 

subsets is defined by 5 parameters {d1, d2, d3, d4, d5} as 

shown in Fig. 5. 

 

 

 

 

 

 

 
 

Fig. 5. Membership functions of output ΔDN. 

In this study, we consider a PI-type fuzzy controller for 
which the duty ratio 𝐷 is obtained by: 

𝐷(𝑘) = 𝐷(𝑘 − 1) + 𝐺𝐷 × ∆𝐷𝑁(𝑘)                              (5) 

where, 𝐺𝐷 is the scaling output factor. 

3. Particle Swarm Optimization 
The Particle swarm optimization (PSO) is new 

Evolutionary Algorithm (EA) technique developed by 

Kennedy and Eberhart in 1995 [31], and inspired by 

the social behavior of flocking birds and schooling 

fishes. In this algorithm, several cooperative agents are 

used to exchange information obtained in its respective 

search process. Each agent is referred to a particle 

following two simple rules, i.e., following the best 

performing particle, and moving towards the best 

position found by the particle itself. Through this way, 

each particle eventually approaches an optimal or close 

to optimal solution [19]. It can be obtained high quality 

solutions within shorter calculation time and stable 

convergence characteristics with PSO algorithm than 

other stochastic methods such as genetic. Particle 

swarm optimization uses particles which represent 

potential solutions of the problem. Each particles fly in 

search space at a certain velocity which can be adjusted 

in light of proceeding flight experiences. The projected 

position of ith particle of the swarm, and the velocity 

of this particle 𝑣𝑖 at (𝑡 + 1)𝑡ℎ iteration are defined as 

the following two equations (6) et (7) in this study: 

 

A basic PSO algorithm can be described as follows: 

Step 1 (Initialization): 

Initialize a population of particles with random 

positions and velocities on D-dimensions in the 

problem space, 

Step 2 (Evaluation):  

Evaluate desired optimization fitness function in D 

variables for each particle, 

Step 3 (Update velocity and position of particles):  

The velocity and position of each particle in the swarm 

are updated according to the following equation: 

𝑉𝑖(𝑡 + 1) = 𝐶𝐹𝑎 (𝑤𝑉𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) − 𝑋𝑖(𝑡))

+ 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝑖(𝑡)))          (6) 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1)                                      (7) 

where, 𝑉𝑖(𝑡) is current particle velocity, 𝑉𝑖(𝑡 + 1) is 

particle velocity update, 𝑋𝑖(𝑡) is  current particle 

position, 𝑋𝑖(𝑡 + 1) is particle position update, 

𝑝𝑏𝑒𝑠𝑡𝑖(𝑡) is best position found by the 

particle, 𝑔𝑏𝑒𝑠𝑡(𝑡) is best solution found by the swarm. 

Step 4 (Stop criterion):  

Loop to step 2 until a criterion is met or end of 

iterations.  

The general parameters of PSO are set as:  𝑤 is the 

inertia coefficient, c1 and c2 are two positive constants, 

𝑟1 and 𝑟2 are random numbers in the range [0, 1].   

In [32] Clerc shows that the use of constriction factor 

(𝐶𝐹𝑎) may be necessary to ensure convergence of 

 

 

 

 

 

 

 

Table 2 1 

Rule base table for computation ∆𝐷𝑁. 2 

  ∆𝑒 3 

   𝑒  NB NS ZE PS PB 4 

  NB  3 3 5 5 5 5 

  NS  3 3 4 4 4 6 
  ZE  4 3 3 3 2 7 
  PS  2 2 2 3 3 8 

  PB  1 1 1 3 3 9 
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PSO algorithm. The coefficient ‘𝑤’, corresponds to a 

kind of inertia, which is used to control the impact of 

the previous velocities on the current velocity of each 

particle and tries to explore new areas. It can be a 

positive constant or a positive linear or non linear 

function of time [33]. In this paper, we use an adaptive 

coefficient (w) proposed in [34]. The updating 

expression of w is given by: 

𝑤 =
𝑡 − 𝑡𝑚𝑎𝑥

𝑡𝑚𝑎𝑥
                                                                    (8) 

where, t is current iteration number, 𝑡𝑚𝑎𝑥  is maximum 

number of iterations. 

The value of the constriction factor CFa used in this 

work is given by the following equation:  

 

𝐶𝐹𝑎 =
2

abs(2−C−sqrt(C²−4∗C))
                                           (9)  

with  𝐶 = 𝑐1 + 𝑐2 and 𝐶 > 4  

In this paper, the parameters values c1, c2 and CFa are 

2.04, 2.04 and 0.721, respectively. 

At the end of the iterations, the best position of the 

swarm will be the solution of the problem. It is not 

possible to get an optimum result of the problem 

always, but the obtained solution will be an optimal 

one. It cannot be able to an optimum result of the 

problem, but certainly it will be an optimal one.  

3.1. Optimization criterion  
The design of a fuzzy MPPT can be formulated as 

an optimization problem where the objective is to find 

the best parameters of the fuzzy MPPT that minimize 

the power losses, mainly due to weather conditions, in 

the PV system.  The power losses can be presented as a 

quadratic function as given in Eq. 10. 

𝐼𝑆𝐸 = ∫ (𝑒(𝑡))
2

𝑑𝑡

𝑡𝑓

0

                                                       (10) 

where, 𝑒(𝑡) = 𝑃𝑚𝑎𝑥(𝑡) − 𝑃𝑝𝑣(𝑡) 

 𝑃𝑚𝑎𝑥  is the maximum power of the PV panel, 𝑃𝑝𝑣  is 

the instant power provided by the PV panel and tf  is 

the simulation time.  

ISE is the integral squared error criterion to be 

minimized using PSO. Fig. 6, illustrates this 

optimization approach by PSO and Fig. 7 shows the 

Matlab/Simulink model used to evaluate the ISE 

criterion.  

In the subsequent sections, the detailed implementation 

strategy of PSO algorithm is described.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Optimization approach by PSO algorithm. 

 

 

Fig. 7. Matlab/Simulink model used to evaluate the 

ISE criterion. 

3.2. Initial population 

 Particles of the initial population are initialized 

with random values. For each element Xi,j of 

chromosome i, a random number ri,j between 0 and 1 is 

generated. Then the value of Xi,j is defined by mapping 

[0, 1] into [𝑋𝑗
𝐿 , 𝑋𝑗

𝑈], according the following equation: 

𝑋𝑖,𝑗 = 𝑋𝑗
𝐿 + 𝑟𝑖,𝑗 × (𝑋𝑗

𝑈 − 𝑋𝑗
𝐿)                                      (11) 

where, 𝑋𝑗
𝐿 and 𝑋𝑗

𝑈   denote the lower and upper bound 

of Xi,j, respectively. 

3.3. Structure of particle  
In this paper, we optimize the parameters of 

membership functions of the fuzzy MPPT including in 

PV system. For a FLC with 2 inputs variables and one 

output variable, we have 3×5 membership functions. 

Each 5 membership functions are defined by 5 

parameters. Therefore the structure of PSO’s particle 

can be presented as vector of 15 real parameters as 

depicted in Fig. 8. 
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Fig. 8. Structure of the N particle using real coding. 
 

4. Experimental results and discussion 
This section describes the experiments in the 

implementation of the fuzzy MPP tracking method 
optimized by PSO algorithm of the PV conversion 
power system. The PSO parameters values are given in 
Section 3. 

The bench test was based on the following 
equipment: an Elgar 5500 programmable DC power 
supply is used to emulate the BP SX150S PV panel 
[35], a DC–DC boost power converter operating with a 
switching frequency of 8 kHz and a resistive load. A 
hall effect current probe and a hall effect voltage probe 
were used to detect the PV output current and PV 
output voltage. A 2200 µF capacitor is used to filter the 
DC output voltage representing the PV panel output 
voltage and the PV output current is measurements are 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

measured across the 0.6mH inductor.These 
measurements are both acquired by the dSPACE A/D 
converters and filtered once again with implemented 
digital filters. Fig. 9 shows the experimental setup 
representing the studied PV system. The experimental 
bench is carried out in the GREAH laboratory. 

4.1. dSPACE implementation of the optimized FLC 
based PSO 

The motivation behind the implementation of the 

fuzzy MPPT method presented in introduction, is the 

application in a dSPACE board. The FLC is designed 

and optimized with Matlab-Simulink. The controller is 

configured according to the previously structure 

detailed in subsection 2.3:   

The input variables (e and ∆e) and the output    

variable DN are characterized by five membership 

functions {NB, NS, ZE, PS, PB} and their 

respective domain intervals are [-35,  5] for e, [-49, 

49] for e and [-1.5, 1] for DN output. These 

intervals are obtained by calculating the maximum 

values allowed for each used variable in the test 

environment of our  PV system. Thus, the 

corresponding rule base includes 25 fuzzy rules 

(Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Experimental setup of the emulated PV system. 
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The fuzzy MPPT -PSO was digitally implemented 
on a dSPACE DS1104 DSP controller board platform 
with a sample time of Ts = 50 µs. Fig. 10 shows the 
overall PV system diagram of the experimental set-up. 
Real-time control of continuous systems is done using 
a PC connected to the dSPACE DS1104 board.  

The programming is done using the SIMULINK 
modeling tool, which helps to pose the problem in a 
graphical way using the interconnected blocks. In fact, 
many DSP-based real-time development systems now 
come with an interface to Simulink by which they can 
convert Simulink blocks into machine code that can be 
run on a DSP-based system. These controllers make 
use of the real time interfacing toolbox available in 
MATLAB to interface the SIMULINK model with the 
real hardware models.  

We can easily modify the controller’s parameters, 
control the output load or change the emulated weather 
conditions in the PV panel’s model. In addition, 
acquired currents and voltages can be saved or plotted. 

4.2. PSO learning algorithm 
.To take more realistic operating conditions in 

account, three levels of irradiance (500 W/m2, 1000 

W/m2 and 800 W/m2) were adopted in this study, as 

shown in Fig. 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 11. Learning profile. 

The convergence profile of the PSO algorithm is 

given to a population of 20 particles in the Fig. 12. It 

can be seen in this figure that the PSO algorithm 

converges towards the best fitness with few 

generations. Thus, the PSO evolves efficiently in 

search of better parameters to design an optimal FLC 

and increase the system robustness with respect to the 

weather conditions. 

 

           

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

Fig. 10. Overall PV system diagram of the experimental set-up. 
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Fig. 12. PSO convergence profile. 

4.3. Tests 

4.3.1. Test under standard tests conditions 

In this section, the test is carried out under standard 

test conditions (STC: E=1000W/m², T=273 K).  

To evaluate the MPPT performance, a transient 

load step change from R=20Ω to R=14Ω is applied at 

time 0.5s.   

Figs. 13 show respectively the fuzzy logic 

controller optimized by PSO algorithm in order to 

generate an optimal duty cycle for the maximum power 

point tracking. As it can be seen also on Fig. 13 the 

generated PV power is always maintained at its 150W 

maximum power. During each acquisition period, the 

controller generates the corresponding new duty ratio 

D which sets the new position of the tracked MPP and 

vice versa.  

The current and voltage curves are given 

respectively in Figs. 13. 

The results presented here have shown that the 

advantages of the system developed are the adaptation 

of the PSO- FLC parameters for fast response, good 

transient performance, and robustness to variations in 

external disturbances. 

 
Fig. 13. PV output power under STC. 

 

4.3.2. Test under different weather conditions 

Fig. 14 shows the effects of variations in irradiance 

level by imposing some increment and decrement. 

Thus, the irradiance level starts from 800W/m² then 

decreases to 1000W/m² after that increases to 900 

W/m² and each variation occurs after 0.5 s and the 

temperature is kept constant during the simulation at 

273 K.  

 

Fig. 14. Irradiance profile. 

 



 

Although the temperature of a photovoltaic cell 

does not vary quickly during a day, a rapid change of 

temperature is tested to evaluate the performance of the 

optimized fuzzy controller. In the Fig. 15,  a rapid 

increase in temperature from 288 K  to 308 K  and a 

rapid decrease also from 308 K to 298 K were 

simulated. The solar irradiation is keeps constant 

during the simulation at 1000W/m². 

 

Fig. 15. Temperature profile. 

Fig. 15 and Fig. 16 shows the behavior of the PV 

system under rapid changes in irradiance and 

temperature are presented, respectively. As it is clearly 

shown in Fig.15(c), the corresponding generated power 

of the fuzzy MPPT -PSO track the MPP after each 

irradiance variation step (Similar for the temperature 

case as Fig.16). The response of controller presents 

little oscillations around the operating point even at 

steady state as we can see in Fig.15(c) and Fig.16.  

The MPP of a PV panel varies according to 

irradiance variation and temperature variation. The 

corresponding fuzzy MPPT -PSO can drive quickly the 

system to the new MPP when an abrupt change of the 

MPP occurs.  

The current and voltage curves are given 

respectively in Figs. 15 (a) and (b).  

The results presented here have shown that the 

advantages of the system developed are the 

adaptation of the fuzzy MPPT -PSO parameters for 
fast response, good transient performance, and 

robustness in face of changing weather conditions. 

 

 

 

Fig. 15. Experimental results under variations 

irradiance. 

 

 
 

Fig. 16. Experimental results under variations 
temperature. 

 



 

5. Conclusion 
 

In this study, an improved maximum power point 

tracking (MPPT) method based Fuzzy- Particle swarm 

optimization algorithm for solar panel is proposed. As 

it is shown, they were successfully used in this work, 

to improve the performance of a fuzzy logic-based 

MPPT controller by optimizing the membership 

functions of this controller. The main advantage of the 

method is the reduction of the oscillation (to practically 

zero) once the maximum power point (MPP) is located. 

Furthermore, the proposed method has the ability to 

track the MPP for the extreme environmental 

condition, e.g., large fluctuations of irradiation 

condition. In addition to the software simulations, an 

dSPACE 1104 was also used to implement the 

hardware prototype of the whole MPP tracker 

including the designed fuzzy MPPT -PSO.  

This work is the first step before a final field 

installation to experimentally validate the effectiveness 

of the proposed fuzzy MPPT -PSO in a stand-alone 

photovoltaic system. 
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