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Abstract: Continuing research has concentrated on the 
elimination of the problem of sensitivity to parameter 
variation of induction motor drive. This paper presents a 
simple method for simultaneous estimation of rotor speed 
and stator resistance in sensorless indirect vector controlled 
induction motor drive. This method is based on luenberger 
observer and the stability of this observer is proved by the 
lyapunov’s theorem, by using measured and estimated stator 
currents and estimated rotor flux. Finally the feasibility of 
the schem is verified by simulation. However, at low speed of 
rotation we get successful resistance identification. 
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1. Introduction. 

 
   Induction motors have been widely applied in industry 
because of the advantages of simple construction, 
ruggedness, reliability, low cost, and minimum 
maintenance, [1]. 
   Control of induction motor is complex because its 
mathematical model is nonlinear, multivariable, and 
presents strong coupling between the input, output, and 
internal variables, such as torque, speed, or flux. 
The use of vector controlled induction motor drives 
allows obtaining several advantages compared to the DC 
motor in terms of robustness, size, lack of brushes, and 
reducing cost and maintenance [2], it achieves effective 
decoupling between torque and flux, But, the knowledge 
of the rotor speed is necessary, this necessity requires 
additional speed sensor which adds to the cost and the 
complexity of the drive system. 
Over the past few years, ongoing research has 
concentrated on the elimination of the speed sensor at 
the machine shaft without deteriorating the dynamic 
performance of the drive control system, [3].   
   The advantages of speed sensorless induction motor 
drives are reduced hardware complexity and lower cost, 
reduces size of the drive machine, elimination of the 
sensor cable, better noise immunity, increased reliability 

and less maintenance requirements. In order to achieve 
good performance of sensorless vector control, different 
speed estimation schemes have been proposed, and a 
variety of speed estimators exist nowdays, [4]. Such as 
direct calculation method, model reference adaptive 
system (MRAS), Extended Kalman Filters (EKF), 
Extended Luenberger observer (ELO), ect. 
   Out of various approaches, Luenberger observer based 
speed sensorless estimation has been recently used, due 
to its good performance and case of implementation. The 
Luenberger observer (LO) belongs to the group of 
closed loop observers. It is a deterministic type of 
observer because it is based on a deterministic model of 
the system, [5]. 
   Therefore, parameter errors can degrade the speed 
control performance. However, the stator resistance 
variation has a great influence on the speed estimation at 
the low speed region, [6]. To solve the above problems, 
online adaptation of the stator resistance can improve 
the performance of sensorless IFOC drive at low speed. 
So, a simultaneous estimation of rotor speed and stator 
resistance is presented based on a luenberger observer, 
[7]. 
   The PI controllers for simultaneous estimators, which 
are also considered an important parameter for 
specifying the estimation process, needs to be designed 
to give quick transient response and good tracking 
performance, [8]. 
In this respect, the singular perturbation theory is used to 
get a sequential and simple design of the observer, and 
the observer stability is ensured through the Lyapunov 
theory, [9]. 
   In this paper a simultaneous estimation of rotor speed 
and stator resistance is presented based on a luenberger 
observer its performances are tested by simulation, so it 
is organized as follows. Section 2 shows the dynamic 
model of induction motor; principle of field-oriented 
controller is given in Section 3. The proposed solution is 
presented in Section 4.  
In Section 5, results of simulation tests are reported. 
Finally, Section 6 draws conclusions. 



 
 

   2. Dynamic Model of Induction Motor  
   By referring to a rotating reference frame, denoted by 
the superscript (d,q), the dynamic model of a three–
phase induction motor can be expressed as follows [2]: 
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  ωs and ωr are the electrical synchronous stator and 

rotor speed; σ is the linkage coefficient, and Tr is the 

rotor time constants. 

3. Principle Of Field Oriented Controller 
 

   There are tow categories of vector control strategy. We 
are interested in this study to the so-called IFOC. As 
shows in Eq (1) that the expression of the 
electromagnetic torque in the dynamic regime presents a 
coupling between stator current and rotor flux, [10].   
   The main objective of the vector control of induction 
motors is, as in DC machines, to independently control 
the torque and the flux; this is done by using a d-q 
rotating reference frame synchronously with the rotor 
flux space vector. The d-axis is then aligned with the 
rotor flux space vector (Blaschke, 1972). Under this 

condition we get:  
 rd =  r and rq = 0 

   The torque equation becomes analogous to the DC 
machine and can be described as follows: 
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   It is right to adjust the flux while acting on the stator 
current component isd and to adjust the torque while 
acting on the isq component. 
Using the Eq (1) we get: 
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   The stator voltage commands are: 
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   The voltages vsd and vsq should act on the current isd 
and isq separately and consequently the flux and the 
torque. The two-phase stators current are controlled by 
two PI controllers taking as input the reference values 
i*

sd , i*
sq and the measured values. Thus, the common 

thought is to realize the decoupling by adding the 
compensation terms ( sde~  and sqe~ ), [11].

   The block decoupling is described by the followingg 
equations: 
                     SqSssd iLe ...~   
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   It is necessary to determine the amplitude and the 
position of rotor flux. In the case of an indirect field 
oriented control, the module is obtained by a block of 
field weakening given by the following non linear 
relation: 
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   The slip frequency can be calculated from the values of 
the stator current quadrate and the rotor flux oriented 
reference frame as follow: 
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   The rotor flux position is given by:   
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   3.1 Rotor Speed Regulation 
 
   The use of a classical PI controller makes appear in the 
closed loop transfer function a zero, which can influence 
the transient of the speed. Therefore, it is more 
convenient to use the so-called IP controller which has 
some advantages as a tiny overshoot in its step tracking 
response, good regulation characteristics compared to 
the proportional plus integral (PI) controller and a zero 
steady-state error 
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The gains of IP controller, Kp and Ki, are determined 
using a design method to obtain a trajectory of speed 
with the desired parameters ( and n ). The gains 
parameters values of the IP speed controller are easily 
obtained as: 

 

              
















22

2

2

..
.

.
)...2(

rp

n
i

r

rn
p

pK
J

K

P
RBJK












                 (12) 

 
   According to the above analysis, the indirect field 
oriented control (IFOC) [12] of induction motor with 
current- regulated with PWM inverter control system can 
reasonably be presented by the block diagram shown in 
the Fig. 4. 
   The two PI current controllers (Fig. 4) act to produce 
the decoupled voltages 1sdv  and 1sqv .  

   The reference voltages *
sdv  and *

sqv  determined by (6) 
ensure decoupled two-axes control of the induction 
motor drive. 
 
 4. Luenberger Observer 
 
   The Luenberger observer (LO) belongs to the group of 
closed loop observers. It is a deterministic type of 
observer because it is based on a deterministic model of 
the system, [5]. This observer can reconstruct the state 
of a system observable from the measurement of inputs 
and outputs. It is used when all or part of the state vector 
can not be measured. 
It allows the estimation of unknown parameters or 
variables of a system. 
The equation of the Luenberger observer can be 
expressed as: 
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   In this work, a sensorless Indirect Rotor-Flux-oriented 
Control (IFOC) of induction motor drives is studied. The 
strategy to estimate the rotor speed, stator resistance and 
the flux components is based on Luenberger state-
observer (LO) including an adaptive mechanism based 
on the lyaponov theory, as displayed in Fig.2. 
 
 
 
 
 
 
 
 
 
 

Fig.2. Structure of Luenberger Observer 



 
 

4.1. Rotor Model of Induction Motor in the 
Coordinate ),(   

   The model of the induction motor can be described by 
following state equations in the stationary 
reference ),(  : 
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The state equations can be written as follows: 
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   4.2 Determination of the Gain Matrix 

   The determination of the matrix K using the 
conventional procedure of pole placement. We proceed 
by imposing the poles of the observer and therefore it’s 
dynamic. 
   Determining the coefficients of K by comparing the 
characteristic equation of the observer          with the one 
we wish to impose. In developing the different matrices 
A, C and K we obtain the following equation: 
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   Or K’ and K’’ are complex gains. 
   The dynamics of the observer is defined by the 
following equation: 

(17)                                                                                          
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   Whose roots are proportional to the poles of the MAS; 
the proportionality constant k is at least equal to unity  
(  k > 1)  
The identification of expressions (16) and (17) gives: 
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   For the coefficients of the gain matrix of the observer 
is placed: 
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and in accordance with the antisymmetry of the matrix A 
we set the gain as follows: 
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   The poles of the observer are chosen to accelerate 
convergence to the dynamics of the open loop system. In 
In general, the poles are 5-6 times faster, but they must 
remain slow compared to measurement noise, so that we 
choose the constant k usually small. 

 
 

4.3 State representation of the Luenberger 
observer 

   As the state is generally not available, the goal of an 
observer is to place an order by state feedback and 

estimate this state by a variable which we denote 


X  : 
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4.4 Adaptive Luenberger observer for speed 

estimateion: 

   Suppose now that speed is an unknown constant 
parameter. It's about finding an adaptation law that 
allows us to estimate it. The observer can be written: 
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   The mechanism of adaptation speed will be reduced by 
Lyapunov theory. The estimation error of the stator 
current and rotor flux, which is simply the difference 
between the observer and the engine model, is given by: 
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  Now consider the following Lyapunov function: 
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  Its derivative with respect to time is: 
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   A sufficient condition for uniform asymptotic stability 
is that equation (27) is negative, which amounts to 
cancel the last two terms in this equation (since the other 
terms of the second member of (27) are always negative) 
, in which case we can deduce the adaptation law to 
estimate the rotor speed by equating the second and third 
term of Eq.  
   It is estimated the speed by a PI controller described by 
the relationship: 
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With Kp and Ki are positive constants. 

 
4.5 Adaptive Luenberger observer for speed and 

stator resistance estimation: 
  Vector control is sensitive to the motor parameter 
variation. Especially, stator and rotor resistance vary 
widely with the motor temperature. 
  If the rotor speed and stator resistance are considered 
as variable parameters, assuming no other parameter 
variations, so the state space of the observer becomes as 
follows: 
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  The estimation error of the stator current and rotor flux 
is given by: 
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A Lyapunov function candidate is defined as follows:  
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  The adaptive scheme for stator resistance estimation is 
found by:  










dtiiiiii
s

K
iiiiiiKR

ssssss
i

ssssssps

)).().((

)).().((





     (32) 




 dtii
s

K
iiKR s

si
es

si
e

i
s

si
es

si
eps )..()..( 











(33) 

                                                                              With : 


 si

ess ii 


; 


 si
ess ii 



 

   Kp and Ki are positive constants. The role of adaptive 
mechanisms is to minimize the following errors. 
Finally, the value of speed and stator resistance can be 
estimated by simple PI controllers. 
   The structure of the proposed adaptive observer for 
speed and stator resistance estimation is shown in Fig. 3. 
These adaptive schemes were derived by using the 
Lyapunov's stability theorem. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  The block diagram of a rotor flux oriented induction 
motor drive, together with both rotor speed and stator 
resistance identifications, is shown in Fig. 4. 
It mainly consists of a squirrel-cage induction motor, a 
traingulo sinusoidal voltage controlled pulse width 
modulated (PWM) inverter, a slip angular speed 
estimator, equipped with luenberger observer. 
  The induction motor is three-phase, Y-connected, four 
pole, 1.5 Kw. 220/380V, and 50Hz. The torque 
component voltage command vqs is generated from the 
speed error between the command and the estimator 
rotor speed through the torque controller. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Block diagram of simultaneous estimation 
of rotor speed and stator resistance 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Simulation Results and Discussion 
 
   The above presented procedure has been simulated 
using Matlab-Simulink Software. Fig.4 shows the 
simulation block diagram of IFOC induction motor drive 
system with simultaneous estimation of the stator 
resistance and rotor speed, The parameters of the 
induction motor used are given in appendix. 
   Figure 5 shows the response of the proposed variable 
speed sensorless system for a step reference since 0 

rad/sec for 100 rad/sec, and a reverse speed to -100 
rad/sec, under load change. Disturbances are introduced 
by applying and removing a load torque equal to 10N.m 
at 0.8, then reapplying the same load torque at 2.5 
second but at 1.25 second the resistance value increased 
sharply by 40% from its nominal value. These results 
show clearly very satisfactory performances in tracking, 
and very low time of reaction in transient state. The 
actual motor speed perfectly follows the reference 
trajectory, and the observer’s response illustrates an 
excellent precision of the estimated speed and fluxes. 
   In Fig. 6, the figure shows the simulation results of 
actual and estimated speed for step changing of 
reference from 10 rad/sec to -10 rad/sec, and the nether 
one shows the speed error in the corresponding process. 
It is shown that the estimated speed tracks the actual and 
the reference speed accurately. In order to investigate the 
performance of the drive for parameter variations in 
stator resistance, a series of simulations were conducted 
at 10 rad/sec and with a constant load torque of 10 Nm, 
figure 8 shows the performances of the estimation of 
rotor speed and  stator resistance at speed 10 rad/sec the 
resistance value increased sharply by 40% from its 
nominal value at time 1.25 second. In which the Rs 
denotes the stator resistance. 
   In Fig. 7 simulation results of the speed estimation 
without stator resistance compensator is given, we can 
see from Fig. 7, on the condition that the actual stator 
resistance is changed by %40; the speed estimation is 
inaccurate when the stator resistance compensator is 
inactive. There is speed estimation error.  
   Fig. 8. Shows the simulation results of a simultaneous 
estimation of rotor speed and stator resistance. As 
shown in this figure, the speed identification is worked 
perfectly well except for a little oscillation in the 
beginning of the process. The reason for this is that there 
is initial error in the estimated stator resistance, with 
time goes on, the adaptation mechanism quickly 
compensates the initial error and therefore, compensates 
the initial speed estimation error. As shown in Fig. 8, the 
blue line denotes the actual value of stator resistance 
while the red one for estimated one, the latter track the 
former accurately, which proves the validity of the 
proposed scheme. 
 
 
 
 
 
 
 

Fig.4. Block diagram of sensorless (IFOC) with     
       stator resistance tuning of induction motor  
         drive system. 
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Fig. 5. Performances of speed control using an L O proposed with a speed reverse and under load change. 
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Fig. 6. Simulated speed response for step varying of the reference speed 
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Fig. 7. Simulation results of the speed estimation with stator resistance increased sharply by 40% from Rsn 
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Fig. 8. Simulation results of the speed and stator resistance estimation 



 

6. Conclusions 
 
  This paper has presented simultaneous estimation of 
rotor speed and stator resistance based on a luenberger 
observer. A robust adaptive flux observer is designed for 
a speed sensorless IFOC-controlled induction motor 
drive. 
   The proposed control scheme system was designed and 
analyzed under various operating conditions, and its 
effectiveness in tracking application was verified at high 
and low speed. So, the influence of the stator resistance 
variation on the speed estimation can be weakened to the 
minimum. The effectiveness of the method is verified by 
simulation. 

Appendix 

Induction Motor Parameters 
 

50 Hz, 1.5  Kw , 1420 rpm, 380 V, 3.7A 
   805.3rR ,   85.4sR ,  274sL  mH,  274sL  mH 

031.0J   kg.m2, F=0.00114kg.m2/s 
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