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Abstract: In this paper, a wavelet based adaptive hierarchical 

control scheme is investigated for a class of uncertain underactuated 

systems under the effect of actuator saturation. A two level 

hierarchical scheme is utilized to derive the classical control term 

whereas the system uncertainties are estimated by using wavelet 

networks. An auxiliary control dynamics is developed and 

incorporated in the control term to deal with actuator saturation in 

antiwind up paradigm and to ensure the rapid recovery of 

unconstrained response. Uniform ultimate boundedness of the 

closed loop system is proved in Lyapunov sense. Simulation results 

illustrate the effectiveness of proposed approach.    
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1. INTRODUCTION 

 

Underactuated systems represents a typical class of nonlinear 

systems in which lesser actuations are available than the degrees 

of freedom to be controlled [1]. Underactuation is displayed by 

several systems like twin rotor system, underwater vehicles, 

mobile robots and so on. Underactuation often complicates the 

controller design as the control scheme is needed to ensure the 

simultaneous control and stabilization of all the degrees to 

freedom with inadequate actuation available [1, 2]. Two 

approaches are commonly used for the development of controller 

strategies for underactuated system. First approach transforms the 

original system model to cascade form which is then used for the 

development of control term [2]. Second approach applies a 

hierarchical methodology, which utilizes the original subsystem 

model of the underactuated systems. This scheme defines the 

hierarchical error terms by appropriately combining the 

subsystem error terms. All these error terms are then considered 

in the order of increasing hierarchy and individual control 

components are designed, this process ultimately leads to the 

designing of overall control term. Control term so developed 

ensures the stability of overall system [3]. Control schemes based 

on aforementioned approaches have been cited in the literature 

[2-10]. Actuators used in practical systems are always subjected 

to saturation and cannot reproduce the input beyond a certain 

limit. Actuator saturation causes the system detuning and 

sometimes even leads to instability. Several control approaches 

for nonlinear systems with a priori consideration of actuator 

saturations have been cited in the literature. These approaches are 

either based on the development to some auxiliary system for the 

compensation of actuator saturation effects [11, 12] or some 

adaptive tuner like neural network for saturation compensation 

[13-15].  

In recent years, neural networks, wavelet networks and other 

adaptive tools have been incorporated in the controller schemes 

for uncertain nonlinear systems [16, 17]. Wavelet networks, due 

to the othonormality and localization properties of wavelet bases 

have emerged as an optimal approximation tool to imitate 

nonlinear functions with arbitrary precision [17, 18]. Wavelet 

network is a nonlinear regression structure that performs input-

output mapping by using scaled and shifted versions of some 

wavelet function. Several research findings on the development 

of wavelet based controller approaches for uncertain nonlinear 

systems are cited in the literature [18-24].  

This paper addresses the issue of designing a wavelet based 

adaptive control scheme for a class of single input multiple 

outputs (SIMO) uncertain underactuated systems considering 

actuator saturation. A two level hierarchical scheme is used to 

develop the desired control law. Subsystems error surfaces are 

treated as first level error surfaces and are used to derive the 

control terms for individual subsystems. Overall control law is 

thereafter deduced by defining a second level error surface, 

which is obtained by suitably combining the first level error 

surfaces. Wavelet networks used to mimic system uncertainties 

and tuning laws are derived for the online adjustment of weight 

parameters. To deal with actuator saturation, an auxiliary control 

dynamics is developed to reshape the control term and to recover 

the unconstrained response quickly as soon as the system comes 

out of saturation. Convergence analysis of the closed loop system 

is carried out in Lyapunov sense.   



This paper is organized as follows. System description is given 

in section 2, whereas section3 presents the hierarchical controller 

design and its extended version for uncertain underactuated 

systems with input constraints. Aspects related to the stability of 

closed loop system are also discussed in section 3. Results of the 

simulation carried out for ball beam system are illustrated in 

Section 4, whereas Section 5 concludes the paper. 

 

2. SYSTEM DESRIPTION 

 

Consider the following class of uncertain underactuated system 

consisting of n
 
interconnected subsystems which are actuated by 

a single input [3] 
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where [ ] 2

1 2 2
, , , ( )

T n

n
X x x x t= ∈ℜ� are state variables of the 

system, ( )u t ∈ℜ is the control input and actuator output while 

( )v t is the unconstrained control effort and input to actuator. 

Nonlinearity (.)Ψ  represents the input-output mapping of 

actuator.  Terms  ( )
i

f X ∈ℜ  and ( )
i

g X ∈ ℜ ( 1,2, , )i n= � are 

system nonlinearities, abbreviated as 
i

f  and 
i

g respectively. 

1 2( ) [ ( ), ( ), , ( )]
n

n
y t y t y t y t= ∈ℜ�  is the output vector.  

Nonlinearities
i

g  are considered to be bounded away from zero 

and 
i

g L∞∈ which means 

0    , 0iL i iU xg g g x t< ≤ ≤ ∀ ∈ Ω ≥  

here 
n

x
Ω ⊂ ℜ is some compact set of allowable state trajectories 

while functions 
i

f are considered as smooth  uncertainties. 

Assumption1: Control input (.)Ψ satisfy the following 

saturation dynamics [13] 

max

max max

( ) ;

( ) sgn( );

v v v u

v u v v u

Ψ = <


Ψ = ≥
                                                  (2) 

Part of the input which is suppressed by the saturation 

nonlinearity is then given by   

u u v∆ = −                                                                                (3) 

The control objective is to track the given trajectory in 

presence of system uncertainties and actuator saturation. For 

specified trajectory vector 1 2[ , , , ]
n

d d d nd
y y y y= ∈ℜ� the control 

law must ensure the uniform ultimate boundedness of closed loop 

system. 

Assumption2: Desired trajectory idy
 
and its derivatives up to 

second order are bounded.  
 
 

 

3. ADPTIVE HARERCHICAL CONTROL DESIGN 

 

This section details the development of adaptive controller for 

system under consideration. To facilitate the controller design, 

initially it is assumed that system is unconstrained with u v= . 

Consider the 
th

i subsystem  

2 1 2

2

,                 1,2, ,
i i

i i i

x x i n

x f g u

− = =

= +

� �

�
                                     (4) 

Defining tracking error as  

2 1 2 1i i id
e x y− −= −                                                            (5) 

Differentiation of 
2 1i

e − () results in 

2 1 2i i id
e x y− = −� �                                                              (6) 

Defining virtual control term as 

2 2 1id i i idx k e y−= − + �                                                       (7) 

where 0
i

k > . 

Filtered tracking error for 
th

i  subsystem can be defined as  

2 1 2i i i is c e e−= +                                                            (8) 

where 2 2 2i i ide x x= −  and 0
i

c > . 

Filtered tracking errors defined for individual subsystems are 

considered as the first level error surfaces and are used to derive 

control laws for individual subsystems. From (8), it follows that 

2 2 1 2( ) ( )i i i i i i i ids c e k e f g u x−= − + + −� �                                         (9)      

From (9), the control laws for individual subsystems can be 

defined as  

2 2 2 1

1
( ( ) )i i id i i i i i

i

v f x c e k e as
g

−= − + − − −�                                 (10)

 
where 0a > .  

These control terms are meant to solve the control problem of 

individual subsystems and due to the physical constraints 

associated with the system under consideration, it is not possible 

to apply these control terms directly to the system. To deduce a 

feasible control law, hierarchical strategy is followed and a 

second level error surface is defined as  

1 1 2 2 n n
S s s sη η η= + + +�                                             (11) 
where , 1,2,

i
i nη = �  are coupling parameters. Second level error 

surface is obtained by appropriately combining the first level 

error surfaces [3]. Control law is now deduced to ensure the 

convergence of S (11).       

Defining a control term of the form 

1

n

p c

p

v v v
=

= +∑                                                           (12) 

where , 1, 2,
i

v i n= � are subsystem control terms and 
c

v  is the 

compensating control term defined as 
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(13) 

Control term (10) appears feasible for the class of 

underactuated systems as it ensures the convergence of error 

surface (11) and boundedness of first level error surfaces (8). 

However, the formulation of control term (12) requires exactly 

known system nonlinearities but as the nonlinear terms 

, ( 1,2, )
i

f i n= �   are considered unknown, control law (12) 

cannot be implemented. Besides this control term may cause 

actuator saturation.  Therefore, an adaptive version of control law 

is deduced by incorporating wavelet network to approximate 

system uncertainties and an auxiliary control term is developed to 

deal with actuator saturation.  

Due to their potential to approximate any nonlinear function at 

any arbitrary accuracy, wavelet networks are often used for the 

estimation of unmodeled dynamics [18]. Wavelet network 

estimation of any function  
2

( ) ( )f x L∈ ℜ   can be expressed as 

0 0

/ 2

, , ,
ˆ( ) 2 (2 ) ( )

j j

J J
j j

j k j k j k

j J k K j J k K

f x x k xα ψ α ψ
= ∈ = ∈

= − =∑ ∑ ∑ ∑
       

(14)

 
where , ( )j k xψ ∈ℜ represents the scaled and shifted version of 

some mother wavelet basis ( )xψ while ,j kα ∈ℜ  represents the 

weight of the corresponding basis function, 
0

J and J represents 

the coarsest and finest resolution levels and 

0 0 ( , 1, , )jK j J J J⊂ = +� �
 

are the translates for a particular 

resolution level.
 
In vector form, () can be rewritten as 

ˆ ( ) ( )T
f x xα ψ=                                                                    (15) 

For the estimation of multivariate functions of the form

( ) :
n

f X ℜ → ℜ , wavelet network with multidimensional 

wavelet basis can be used. Multidimensional wavelet basis can be 

generated by the tensor product of single dimensional wavelet 

basis [19].     

, ,

1

( ) ( )
j i

n

j K j k i

i

X xψ ψ
=

= ∏                                                        (16) 

 As the wavelet networks with multidimensional basis are 

associated with problem of curse of dimensionality, in this work, 

in order to reduce the computational burden, single wavelet 

network with n outputs is constructed and weight parameters of 

each output are tuned to minimize the independent cost functions. 

With ˆ ( 1,2, , )if i n= � as the wavelet network estimates of 

nonlinearities if , control term iv (10) can be rewritten as 

2 2 2 1

1 ˆ( ( ) )i i id i i i i i

i

v f x c e k e as
g

−= − + − − −�                                 (17) 

Under the condition of actuator saturation, actual control effort 

applied to system is governed by the saturation dynamics (3) and 

the subsystem error dynamics (9) becomes 

2 2 1 2( ) ( )i i i i i i i i ids c e k e f g v g u x−= − + + + ∆ −� �                            (18) 

Here the term ig u∆ describes the effect of saturation. The 

effect of actuator saturation can be viewed as a nonlinear 

disturbance which can detune the system dynamics. To 

compensate the effect of actuator saturation, the control term (10) 

is to be reformulated. 

Defining an auxiliary dynamics of the form [12] 

i i i ie b e g u∆ = − ∆ + ∆�
                                                   (19) 

where 0ib > . 
Using (19), control term (17) can be reformulated as  

2 2 2 1

1 ˆ( ( ) )i i id i i i i i i

i

v f x c e k e as e
g

−= − + − − − − ∆�                         (20) 

This modification can be viewed as the reshaping of (17) so as 

to deal with saturation in antiwind up paradigm. Next part of this 

section describes the development of update laws for wavelet 

weight parameters and reformulation of compensating control 

term (13). 

For some real constant but unknown optimal weight parameter 

vector 
*α nonlinear function ( )if x  can be approximated as 

* 2
;

T n

i i i i xf Xα ψ ε= + ∀ ∈ Ω ⊂ ℜ                                       (21) 

here 
i

ε  is the approximation error and is assumed to be bounded 

by some arbitrary constant 0δ > such that i
ε δ≤ [18].Optimal 

parameters are needed for the best approximation of the function 
so update laws are developed to drive the weight estimate vector 

α̂  towards its optimal value. 

Defining a cost function of the form 

21

2
i iJ f= �

                                                               
(22) 

where if
� is the function estimation error defined as 

ˆ ( )T

i i i i i i
f f f ψ ε= − = α +� �

                                                  
(23) 

with weight estimation error 

 
* ˆ

i i iα = α − α�
                                                                      

(24)
 

According to MIT rule [26], following weight updates results 
in the minimization of cost function (22) 

ˆ ˆ ;   1, 2, ,
i i i i i i i i

f i nκ ψ κ σα = −α = − + α =�� �� �
                    (25) 

where 0iσ > .
   

To analyze the convergence of estimation errors (23, 24), 
consider a Lyapunov function of the form [27] 

1

2
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i

V
κ

= α α� �

                                                                        
(26) 

Differentiating (26) and substituting the adaptation laws 
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With the use of equation (23) above dynamics results in 
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Assumption3: Over a compact set
n

xΩ ⊂ ℜ with
x

x∀ ∈ Ω ,   
wavelet basis function and approximation error are bounded i.e. 

i
Lψ ∞∈ and

i
Lε ∞∈ .  

Considering assumption 3 and applying Young’s inequality 
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where 

2 2
2

*max( )
2 2

i i i

i i

ε σ µ
ζ = + α and 0iµ > .    

Above inequality implies the boundedness of weight 
estimation error to residual set 

2
( )

2i

i

i i i i

i

α

σ
α ζ σ

µ

  
Ω = α ≤ − 

  
�

� �                                          (30) 

From (23), we have 

i i i i
f ψ ε≤ α +� �

 

    
i i i

λ γ≤ α +�
                                                                  

(31)
 

where max
i i

ψ λ= and max
i i

ε γ=
 
 

As the weight estimation error
i

α� approaches to residual set 
iαΩ �

(30), function estimation error
i

f�  (23) converges to following 

residual set  

2
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As the function estimation error
i

f�  (23) is not available, the 

update laws (25) could not be implemented. To implement 
update laws, estimation error is expressed in terms of measurable 
error variables. From (18) and (20), we have 

( )i i i i i if s g u e a s= − ∆ + ∆ +� �
                                          (33) 

As is�  is not available for measurement, it is approximated as 

( ) ( )i i

i

s t t s t
s

t

+ ∆ −
=

∆
�                                                                (34) 

where t∆  is a small positive constant. 

To attenuate the estimation error of wavelet network and the 
portion of saturation disturbance left after the compensation, a 
robust control is inserted in the compensating control term (13). 
Thus the compensating control term becomes 
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To analyze the convergence of the closed loop system with the 
adaptive controller developed, consider a Lyapunov function of 
the form [27] 

21

2
V S=

                                                                               
(36) 

Its differentiation results in 

1

2 2 1 2

1

  

  (( ( ) ( ))

n

i i

i

n

i i i i i i i i id

i

V SS

S s

S c e k e f g v g u x

η

η

=

−
=

=

=

= − + + + ∆ −

∑

∑

��

�

�

              

(37) 

Substitution of the control term (12) with (20, 35) results in 
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where 
1

max ( )
n

i i i i

i

f g u eχ η
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 
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Inequality (39) indicates that the error surface S  is uniform 

ultimate bounded and converges to the residual set 

2
S S S

a

ρ χ  
Ω = ≤ 

                                                                  

(40)

 
Convergence of the error surface S  to the residual set (40) 

indicates the boundedness of the associated subsystem error 
surfaces  

1 2, , , ns L s L s L∞ ∞ ∞∈ ∈ ∈�  

Boundedness of first level error dynamics further implies the 
boundedness of all the closed loop signals.  

 

   

4. SIMULATION RESULTS 

 
This section illustrates the effectiveness of control design 

approach described in section 4 by considering ball beam system. 



Ball beam system is a classical example of underactuated 

systems where torque applied at the centre of the beam is the 

only actuation available to control the ball position as well as 

beam angle. The control objective is to effectively regulate the 

ball position and beam angle from some nonzero initial location. 

Dynamics of ball-beam system is as under  
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where x  denotes  the ball distance along the beam with respect to 

midpoint;θ  is beam angle with respect to horizontal axis; τ  is 

the torque applied at the centre of the beam. 

Various system parameters are m is ball mass, r is ball radius, J

is moment of inertia of the ball, I is rotational inertia of beam 

and l is the beam length. 

With state variables as
1

x x= ,
2

x x= � , 
3

x θ=  ,
4

x θ= � and u τ=  
system dynamics  can be described as 
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(42) 

here 
1 2 1 2
, , ,f f g g are system nonlinearities. Nonlinearities

1
f and 

2
f  are taken as system uncertainties and are approximated by 

wavelet neural network. For simulation, system parameters are 

taken as 0.12 , 0.015 ,m kg r m= = 5 2
1.08J e kgm

−= 2
0.024I kgm=

0.8l m= and 
2

9.8 / secg m= .To demonstrate the performance of 

saturation compensator, simulation is carried out in two phases 

first unconstrained system is considered and then simulation is 

performed under the conditions of constrained input with same 

system and controller settings.    

Adaptive control scheme (12) with (17, 35) is applied to regulate 

the ball position and beam angle from initial states

( ) [ ]0 0.26,0, / 3,0
T

x π=
 
with following controller settings 

1 2

1 2

1 2

2.5, .95

1, 1.5

1.5, 2.91

0.03

k k

c c a

η η

ρ

= =

= = =

= = −

=

 

Wavelet network with 4n =  is constructed by using Shannon 

wavelet function with 0 1J = , 3NJ = as coarsest and finest 

resolution values. Number of translates for each dimension at 

coarsest resolution level are taken as 
1

3K = and are made double 

when resolution is increased by1 . Weights are tuned online using 

the adaptation laws (25), initial conditions for all the wavelet 

   

 

Figure 1.  Trajectory of ball position 

 

Figure 2.  Trajectory of beam angle  

 

Figure 3.  Control input 

 

parameters are set to zero. During first phase, system is assumed 

unconstrained and simulation results for unconstrained input are 

shown in figure 1, 2, 3, 4 and 5. During second phase, input 

magnitude is assumed to be limited to max 0.65u N m= −     and 

control law (12) with (20, 35) is applied to obtain the response of 

closed loop system. Figure 6, 7, 8, 9 and 10 reflect the system 

response under the condition of constrained input. As clear from 

the figures, system response undergoes effective regulation and 

error surfaces converges to the close neighborhood of origin. In 

case of constrained input, system input enters the saturation 

during the initial stage of simulation but with the modified 

control law, input rapidly comes out of the saturation and 

recovered the unconstrained response and thereby system 

stability is preserved.  
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Figure 4.  First  Level Error Surfaces 

 
 

Figure 5.  Second  Level Error Surface 

 
 

Figure 6.  Trajectory of ball position 

 

 

 

 
Figure 7.  Trajectory of beam angle 

  
 

Figure 8.  (a) Control effort  

 
 

 
 

Figure 9.  First level error surface  
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Figure 10.  Second level error surface 

 

5. CONCLUSION 

 

This paper presents an adaptive hierarchical control law for a 

class of uncertain underactuated systems with actuator saturation. 

Two level error dynamics is constructed for derivation of control 

terms. Error surfaces for individual subsystems constitute first 

level error dynamics and provide control components for various 

subsystems. Overall control term is deduced by constructing a 

second level error surface as linear combination of subsystem 

error surfaces. Wavelet networks are used to mimic system 

uncertainties. To deal with actuator saturation, an auxiliary 

dynamics is developed for the rapid recovery of unconstrained 

response. Convergence of error dynamics is proved in Lyapunov 

sense. Simulation results reflect the feasibility of proposed 

control law through stabilization of ball- beam system.     
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