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Abstract—The present paper proposes a sliding mode control
with fixed switching frequency for three-phase three-leg voltage
source inverter based four-wire shunt active power filter, to
improve phase current waveform, neutral current mitigation
and reactive power compensation in electric power distribution
system. The performed sliding mode for active filter current
control is formulated using elementary differential geometry, and
the discrete control vector is deduced from the sliding surface
accessibility using the Lyapunov stability. The problematic of
the switching frequency has been treated considering hysteresis
comparators for the switched signals generating. In this way, a
variable hysteresis band has been established as a function of
the sliding mode equivalent control and a predefined switching
frequency in order to keep this one always constant. The
proposed control has been verified with computer simulation
which showed satisfactory results for the above objectives.

Index Terms—Sliding mode control, Switching frequency,
Four-wire active filter, current harmonics compensation.

I. INTRODUCTION

The three-phase four-wire active power filters are nowadays
attracting more interest for researchers in power quality condi-
tioning [1]- [9]. Two configurations of voltage source inverter
(VSI) can be used to implement three-phase four-wire active
filters, the first one use a fourth leg to provide the neutral
current, where the second configuration uses a conventional
three-leg converter with two cascade connected capacitors in
the DC-bus and the neutral wire is connected directly to the
midpoint of this bus. Although the four-leg configuration is
preferable for its simple controllability [5] [10], the three-leg
configuration which used in this paper is preferable for its
reduced number of semi-conductors.

The computation of compensated components is the first
required step in active filter control, it is used to identify
the undesirable component to be suppressed and eventually
some additional component needed to compensate the active
filter losses. Several control algorithms, such as instantaneous
reactive power theory [11], synchronous reference frame [7],
and fast Fourier transform method [12] are used in this way.
The VSI is then forced to inject these components in the
point of common coupling with minimum error and fast
response. This objective requires an appropriate current control
method. In this way, the sliding mode control (SMC) which is
derived from the theory of variable structure control, known
as a discontinuous control technique taking in account the

time varying topology of the controlled system is naturally
suitable to control systems based on power electronics devices
in general [13]- [18], and active filter as particular case of
these systems [19]- [21]. It is characterized by simplicity
implementation, fast response and high robustness. However,
the ideal sliding motions imply infinite frequency in the
switched signals which is naturally impossible to achieve in
practice, where the switching frequency must be not only
finite but also stable. The idea of fixed frequency control in
power converters has been treated in several works [22]- [28].
Most of these contributions are based on the relation between
the switching frequency and the average control also called
equivalent control and it has been shown that it is possible
to modulate this continuous control to generate the switched
signals with fixed frequency, by using PWM modulation [23]
[29] or Σ−∆-modulation [18].

The present paper proposes to generate the switching signals
through hysteresis comparators, this one is very popular in
current control application, and it is often used in sliding
mode implementation in order to limit the switching frequency.
Although simple and extremely robust [30], the switching
frequency remains free and varies considerably with respect
to the state variables when the hysteresis bandwidth is fixed
preliminary. However, it has been shown in several works
[22] [24]- [27] [30] that it is possible to keep this frequency
constant with adopting a variable hysteresis bandwidth. The
idea developed in this work consists to implement the sliding
mode control with varying the hysteresis bandwidth instead
of the switching frequency which is needed to be constant.
This paper is presented as follows: after this introduction, a
brief description and modeling of the active filter are presented
in section II, after that, the principe of the compensated
components computation is presented section III. The aim
object of the paper is treated in detail in section IV, and the
computer simulations are given in section V. Finally the paper
is ended by a conclusion.

II. SYSTEM DESCRIPTION AND MODELING

Figure. 1 illustrates the basic compensation principle of
the four-wire shunt active power filter (SAPF). The power
circuit is based on three-phase three-leg controlled current
voltage source PWM inverter connected to the grid at the AC
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Fig. 1. Three-phase three-leg VSI based four-wire shunt active filter.

side through a passive filter (Lc, rc) and uses two cascade
connected capacitors C1 = C2 = C as voltage source at the
DC side, with the midpoint connected to the neutral wire of
the grid to compensate neutral load current. An unbalanced
nonlinear load is considered as a polluting source that draws
unbalanced and distorted currents iLabc from the mains. The
SAPF is controlled to inject compensated current vector icabc

in the grid in order to achieve source currents isabc balanced,
sinusoidal and in phase with the fundamental main voltages,
with keeping the DC-link voltages VC1 and VC2 balanced and
in an admissible range. To establish the dynamic equations
of the system, let suppose that the power switches Sj can be
assumed ideals, then the output voltage for each phase j to
neutral can be expressed as follows:

vcj = djVC1 − d̄jVC2 (1)

dj(j = a, b, c) are the PWM switching functions given by:

dj =
uj + 1

2
(2)

Where uj is associated to the power switch states as follows:

uj = 1 If Sj on and S′
j off

uj = −1 If Sj off and S′
j on

Replacing (2) in (1) the active filter voltage is then rewritten
as follows:

vcj =
1
2
uj(VC1 + VC2) +

1
2
(VC1 − VC2) (3)

The DC-bus voltages across the two capacitors are related to
uj and the active filter currents icj as follows:

dVC1

dt
=

1
2C

( ∑
j=a,b,c

ujicj +
∑

j=a,b,c

icj

)
(4)

dVC2

dt
=

1
2C

( ∑
j=a,b,c

ujicj −
∑

j=a,b,c

icj

)
(5)

From the Kirchhoff’s voltage law, the interaction between the
voltage source inverter and the grid is described by following
differential equation:

Lc
dicj

dt
= −rcicj +

1
2
ujVdc +

1
2
(VC1 − VC2)− vj (6)

Where vj represent the main voltages at the point of common
coupling. Finally, these equations are rearranged under matrix
from:

ẋ = Ax + B(x)u + v (7)

Where:
x =

[
ica icb icc VC1 VC2

]T

A =



− rc

Lc
0 0 1

2Lc
− 1

2Lc

0 − rc

Lc
0 1

2Lc
− 1

2Lc

0 0 − rc

Lc

1
2Lc

− 1
2Lc

1
2C

1
2C

1
2C 0 0

− 1
2C − 1

2C − 1
2C 0 0



B(x) =



Vdc

2Lc
0 0

0 Vdc

2Lc
0

0 0 Vdc

2Lc

ica

2C
icb

2C
icc

2C
ica

2C
icb

2C
icc

2C


u =

[
ua ub uc

]T

, v =
[
− va

Lc
− vb

Lc
− vc

Lc
0 0

]T

III. PRINCIPE OF OPERATION

In four-wire systems the current drawn by an unbalanced
nonlinear load contains positive-sequence, negative-sequence
and zero-sequence harmonic components that can be expressed
in αβγ−frames and arranged in matrix form as follows:
iLα =

[
i+Lα1 i+Lα2 . . . i+Lαn i−Lα1 i−Lα2 . . . i−Lαn

]
iLβ =

[
i+Lβ1 i+Lβ2 . . . i+Lβn i−Lβ1 i−Lβ2 . . . i−Lβn

]
iLγ =

[
iLγ1 iLγ2 . . . iLγn

]
In addition, if the main voltages are supposed unbalanced

and contain harmonics, then they can be expressed with the
same way as:

vα =
[
v+

α1 v+
α2 . . . v+

αn v−α1 v−α2 . . . v−αn

]T

vβ =
[
v+

β1 v+
β2 . . . v+

βn v−β1 v−β2 . . . v−βn

]T

vLγ =
[
vγ1 vγ2 . . . vγn

]T

Hence, the instantaneous real, imaginary and zero-sequence
powers absorbed by the non linear load result from the dif-
ferent interactions between the different harmonics sequences
of the load currents and main voltages. In this way, the
instantaneous real power components can be expressed in
matrix form as follows:

P L =

[
vα

vβ

] [
iLα iLβ

]
(8)

This matrix contains all possible combinations between pos-
itive and negative-sequences of the main voltages and load
currents. The diagonal elements are in DC form and all other



elements are in AC form, hence, the DC part of the real power
can be expressed as the trace of P L:

p̄L =
n∑

i=1

(v+
αii

+
Lαi + v−αii

−
Lαi + v+

βii
+
Lβi + v−βii

−
Lβi) (9)

After simplification (9) can be written in abc−frames as
follows:

p̄L = p̄Lf + p̄Lh (10)

Where

p̄Lf = 3V +
1 I+

L1cos(φV +
1
− φI+

L1
)

p̄Lh =
∑n

i=2 3V +
i I+

Licos(φV +
i
− φI+

Li
)

+
∑n

i=1 3V −
i I−Licos(φV −

i
− φI−

Li
)

V +
i , V −

i and I+
i , I−i are the rms values of the positive and

negative-sequences of the voltage and current components for
the ith harmonic, whereas φV +

i
,φV −

i
and φI+

Li
,φI−

Li
are their

phase shift respectively.
Equation (10) shows that if the SAPF is controlled to provide
constant real power p̄L drawn from the source, then the
source currents remain non sinusoidal because positive and
negative sequences of the current that interact with the same
sequences at the same frequencies will contribute also to a
constant real power exchange p̄Lh, consequently, they are not
seen as undesirable components, thus non compensated. As a
conclusion, to guarantee sinusoidal source current, only p̄Lf

must be delivered by the source, in other words, the three-
phase source currents must contain only fundamental positive-
sequence of the load currents I+

L1. However, in the active filter
operation, there are some active losses in the power switches
and passive filter that cause variations in the DC-bus voltage.
To avoid this situation these losses must be compensated by
drawing an additional active current Iloss from the AC source.
This is achieved traditionally by the DC-bus voltage controller
that generate the reference signal for Iloss from the error
between the reference value V ∗

dc and the measured value Vdc.
Thus the peak source current including the DC-bus voltage
regulation is:

Îs = Î+
L1cos(φV +

1
− φI+

L1
) + Iloss (11)

If Iloss is generated by a proportional-Integral (PI) controller
with kp and ki as proportional and integral gains, then:

Iloss = kp(V ∗
dc − Vdc) + ki

∫
(V ∗

dc − Vdc) (12)

Then, the resulting instantaneous three-phase source current
are:

i′sa = Îssin(ωt + δa1)

i′sb = Îssin(ωt + δb1)

i′sc = Îssin(ωt + δc1)

(13)

Where ω is the fundamental pulsation of the main voltages
given by a Phase Locked Loop (PLL), δa1, δb1 and δc1 are
the phase shifts of the fundamental main voltages va1, vb1

and vc1 respectively equal to 0, − 2π
3 and 2π

3 if the main
voltages are balanced. Theses angles are extracted by a Fourier
analysis based detector. In order to compensate the eventual

difference ∆Vdc between the voltage VC1 and VC2 across the
two capacitors C1 and C2 of the DC-bus, the SAPF is forced
to absorb a small DC-term current Idc from the AC source
such that if the average capacitor voltage VC1 is greater than
VC2, a negative DC-term current is added to the line current to
compensate capacitor C2. Conversely, if the average capacitor
voltage VC2 is greater than VC1, a positive DC-term current is
added to the line current to compensate capacitor C1. Hence
the instantaneous reference source currents are:

i∗sa = i′sa + Idc

i∗sb = i′sb + Idc

i∗sc = i′sc + Idc

(14)

The current Idc is computed directly as follows [8]:

Idc = Kdc(VC2 − VC1) (15)

To avoid a large DC-term in the source currents, the gain Kdc

is chosen small and an eventual limiter can be required. Thus,
this method proposes a Proportional-Integral+Proportional
(PI+P) actions for Vdc and ∆Vdc control respectively. Finally
the compensating currents can be obtained from the reference
source current and the load currents as follows:

i∗ca = i∗sa − iLa

i∗cb = i∗sb − iLb

i∗cc = i∗sc − iLc

(16)

IV. SLIDING MODE CONTROL OF THE CURRENT LOOP

The sliding mode control consists to select the suitable
switching configuration of the VSI in order to guarantee the
state trajectory attraction toward a predefined sliding surface,
and to maintain it stable over this surface. The system estab-
lished in (7) is a multi-input multi-output non-linear system. In
order to formulate the sliding mode creation problem, letting:

x =
[
x1 x2 x3 x4 x5

]T

Then (7) can be rearranged in the form [18]:

ẋ = f(x) + G(x)u (17)

Where the (n = 5)-dimensional vector field f(x), the
(n×m = 5× 3)-dimensional input matrix G(x) are given as
follows:

f(x) =



− rc

Lc
x1 + 1

2Lc
x4 − 1

2Lc
x5 − va

Lc

− rc

Lc
x2 + 1

2Lc
x4 − 1

2Lc
x5 − vb

Lc

− rc

Lc
x3 + 1

2Lc
x4 − 1

2Lc
x5 − vc

Lc

1
2C x1 + 1

2C x2 + 1
2C x3

− 1
2C x1 − 1

2C x2 − 1
2C x3



G(x) =



x4+x5
2Lc

0 0
0 x4+x5

2Lc
0

0 0 x4+x5
2Lc

x1
2C

x1
2C

x1
2C

x1
2C

x1
2C

x1
2C





A. Sliding Surfaces

For the n-dimensional controlled system regulated by m
independent switches, m sliding surface coordinate functions
are defined. To fast track the reference current, let define the
three sliding surface coordinate functions in vector form as
follows:

σ(x) =

σ1(x)
σ2(x)
σ3(x)

 =

x1 − x∗1

x2 − x∗2

x3 − x∗3

 (18)

We know yet that when the sliding mode is reached, in
other words, when the state vector is forced to evolve on
the intersection of the sliding surfaces, i.e. the sliding surface
coordinate function σ(x) must satisfy the following condition:
(σ̇(x),σ(x)) = (0,0)

Hence, a sliding mode equivalent control denoted by ueq(x)
may be defined such that the sliding surface coordinate func-
tions σ(x) satisfy simultaneously the following invariance
condition [18]:

σ̇(x) =
∂σ(x)
∂(x)T

(
f(x) + G(x)ueq(x)

)
= 0 (19)

We denote ∂σ(x)
∂(x)T f(x) by Lf (x) , a m-dimensional vector

which represents the directional derivative of σ(x) along the
direction of the vector field f(x) as shown in (20). Similarly,
the (m × m)-dimensional matrix ∂σ(x)

∂(x)T G(x) is denoted by
LG(x) in (21).

Lf (x) =


∂σ1(x)

∂x1

∂σ1(x)
∂x2

. . . ∂σ1(x)
∂x5

∂σ2(x)
∂x1

∂σ2(x)
∂x2

. . . ∂σ2(x)
∂x5

∂σ3(x)
∂x1

∂σ3(x)
∂x2

. . . ∂σ3(x)
∂x5

f(x)

=

Lf1(x)
Lf2(x)
Lf3(x)


(20)

LG(x) =


∂σ1(x)

∂x1

∂σ1(x)
∂x2

. . . ∂σ1(x)
∂x5

∂σ2(x)
∂x1

∂σ2(x)
∂x2

. . . ∂σ2(x)
∂x5

∂σ3(x)
∂x1

∂σ3(x)
∂x2

. . . ∂σ3(x)
∂x5

G(x)

=


Ll

G1(x)

Ll
G2(x)

Ll
G3(x)


=

[
Lc

G1(x) Lc
G2(x Lc

G3(x)
]

(21)

Where Lfj(x) (j = 1, 2, 3) is the jth element in the
vector Lf (x), Ll

Gj(x), Lc
Gj(x) are respectively the jth line

and column in the matrix LG(x). Consequently the (19) is
rewritten as follows:

σ̇(x) = Lf (x) + LG(x)ueq(x) = 0 (22)

This permits to define the equivalent control in the form:

ueq(x) = −
(
LG(x)

)−1
Lf (x) (23)

This means that as a condition for the equivalent control
definition is that the matrix LG(x)must be invertible. Note

also that the equivalent control must satisfy −1 ≤ ueq(x) ≤ 1
which the necessary and sufficient condition for the sliding
mode existence.

B. Sliding Surface Accessibility

Let consider the following Lyapunov function:

V
(
σ(x)

)
=

1
2
σT (x)σ(x) (24)

This positive semi-definite function is identically zero over the
surface S, i.e. when σ(x) = 0 and positive when σ(x) 6= 0.
The quantity V

(
σ(x)

)
can be interpreted as the distance from

the position of the point x in the state space to the desired
surface. Therefore, in order to satisfy the condition σ(x) = 0,
the discrete control u ∈ {−1, 1}m must exercise a closing
or opening action, which permits to decrease the distance
V

(
σ(x)

)
, this means that the variation of this function in

the time must be strictly negative, then;

d

dt

(
V

(
σ(x)

))
= σT (x)σ̇(x) < 0 (25)

This is the condition for the trajectory attraction toward the
sliding surface. Referring to (22) and (25), if σ(x) 6= 0, re-
placing ueq(x) by u, then the time derivative of the Lyapunov
function can be expressed as follows:

V̇
(
σ(x)

)
= σT (x)

(
Lf (x) + LG(x)u

)
< 0 (26)

Likewise, if σ(x) = 0, then:

V̇
(
σ(x)

)
= σT (x)

(
Lf (x) + LG(x)ueq(x)

)
= 0 (27)

Now, if we consider that the switching frequency is infinite
or sufficiently high, we can suppose with good approximation
that the state vector x takes the same value in the both cases
(26) and (27). Thus, replacing σT (x)Lf (x) in (26) by its
value from (27) the restriction (25) can be reformulated as
follows:

V̇
(
σ(x)

)
= σT (x)LG(x)

(
u− ueq(x)

)
< 0 (28)

Hence from (21) the following inequality can be deduced:∑
j=1,2,3

σ(x)T Lc
Gj(x)uj <

∑
j=1,2,3

σ(x)T Lc
Gj(x)ueqj(x)

(29)
Knowing that −1 ≤ ueqj(x) ≤ 1, then (29) can be achieved
by applying the following control action:

uj = −sign
(
σ(x)T Lc

Gj(x)
)

(30)

Where sign designs the sign function

C. Switching frequency

The above expressions are rigorously valid only if we
suppose that the system is operating with infinite switching
frequency. This is an important constraint in practical imple-
mentation of the sliding mode control, in fact in such appli-
cation the switching frequency must be fixed and stabilized at
a predefined design value. In order to limit this frequency, a
commutation law with fixed hysteresis bandwidth is generally
used, therefore. Let suppose that for each restriction σj(x) = 0
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Fig. 2. Complete block diagram of the proposed control.

is assigned a hysteresis band ∆σj(x)∗, therefore σj(x) be-
comes oscillating between ±∆σj(x)∗ and not strictly zero,
consequently the control defined in (30) should be redefined
as follows:

uj = −sign
(
∆σj(x)∗ − σT (x)Lc

Gi(x)
)

(31)

Thus, the time derivative of the jth sliding surface coordinate
function is:

σ̇j(x) = Lfj(x) + Ll
Gj(x)sign∆σj(x)∗

−Ll
Gj(x)sign

(
σT (x)LG(x)

)T (32)

Where ∆σ(x)∗ =
[
∆σ1(x)∗ ∆σ2(x)∗ ∆σ3(x)∗

]T

repre-
sents the m hysteresis bandwidths assigned for the m surfaces.
If we consider that ∆σj(x)∗ are sufficiently small, therefore,
the switching frequency is sufficiently high then we can accept
with sufficient approximation that the (32) will be similar to
the jth component in (22) which can be written as:

σ̇j(x) = Lfj(x) + Ll
Gj(x)ueq(x) = 0 (33)

This means that Lfj(x) = −Ll
Gj(x)ueq(x), hence replacing

in (32), the following equation can be deduced:

σ̇j(x) = Ll
Gj(x)sign∆σ(x)∗

−Ll
Gj(x)sign

(
σT (x)LG(x)

)T

−Ll
Gj(x)ueq(x)

(34)

The new control in (31) takes naturally two limit values
{−1, 1}, needed to decrease the difference |∆σj(x)∗ −
σT (x)Lc

Gj(x)| respectively when ∆σj(x)∗−σT (x)Lc
Gj(x)

is positive or negative. Consequently, to respect the stability

constraint (26), the (34) is needed to be positive in the
switched-on interval ton and negative in the switched-off toff

interval respectively. Therefore, these two intervals can be
deduced as follows:

ton =
2∆σj(x)∗

σ̇+
j (x)

=
2∆σj(x)∗

Ll
Gj(x)

(
1− ueq(x)

) (35)

toff =
2∆σj(x)∗

−σ̇−j (x)
=

2∆σj(x)∗

Ll
Gj(x)

(
1 + ueq(x)

) (36)

Where σ̇+
j (x) and σ̇−j (x) indicate respectively that the time

derivative of σj(x) is positive or negative.
Knowing that the switching frequency is defined as:

fs =
1

ton + toff
(37)

Thus, from (35) and (36), the expression of the switching
frequency can be deduced after simplification as follows:

fs =

(
Ll

Gj(x)1
)2

−
(
Ll

Gj(x)ueq(x)
)2

4∆σj(x)∗Ll
Gj(x)1

(38)

The expression (38) shows clearly that the switching fre-
quency fs depend essentially of the equivalent control vector
ueq(x) and the predefined hysteresis bandwidth ∆σj(x)∗.
If this last one is fixed small, then the switching frequency
will be increased, this situation can be recommended for
harmonic current control, but in practical applications, this
frequency must take a moderate value to limit switching
losses and constraints on power switches, especially when
the compensated powers are relatively important. Otherwise,
the equivalent control is responsible of switching frequency
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(b) Three-phase and neutral currents with active filtering.
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(c) Current spectrums for each phase without active filtering before and
after load change.
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(d) Current spectrums for each phase with active filtering before and after
load change.

Fig. 3. Three-phase currents, neutral currents and current spectrums

variations, which can cause audible noise and electromagnetic
related problems. In order to solve this problem, in this paper,
the hysteresis bandwidth ∆σj(x) is modulated as a function
of the equivalent control ueq(x), thus this band will change
according to instantaneous value f∗s of the equivalent control
in order to remain the switching frequency nearly constant at a
predefined value as it can be seen in the following expression.

∆σj(x) =

(
Ll

Gj(x)1
)2

−
(
Ll

Gj(x)ueq(x)
)2

4f∗s Ll
Gj(x)1

(39)

And finally the discrete controls uj and dj are:

uj = −sign
(
∆σj(x)− σT (x)Lc

Gj(x)
)

(40)

dj =
1
2
(1 + uj) (41)

The complete block diagram of the proposed control is repre-
sented in Fig. 2.

V. SIMULATION RESULTS

The performances of the developed sliding mode control
were verified through simulation using MATLAB software.
The polluting load is constituted with three-phase thyristor
rectifier, single-phase thyristor rectifier and single-phase diode
rectifier. For all the simulations, a load variation is operated
at t = 0.2s. The main parameters of the system are in Table
I.

First, in Fig. 3 the three-phase and neutral currents are
represented respectively with and without active filtering, with
illustrating the harmonic spectrums for each phase. It can be

seen from that the current drawn by the load is unbalanced and
contains positive-sequence harmonics 6h + 5 (7th, 13th. . . ),
negative-sequence harmonics 6h + 5 (5th, 11th. . . ), and zero-
sequence harmonics 6h + 5 (3rd, 9th. . . ), where h indicates
the harmonic order. Note that the zero-sequence harmonics
is the result of the 4th-wire (neutral), this sequence does not
appears in the three-wire systems. With the introduction of the
active filtering action the three-phase current are sinusoidal and
balanced, consequently the current in neutral wire is practically
zero. From the Current spectrum in Fig. 3(d), except the
fundamental positive sequence, all the undesired harmonics
are almost canceled; we can see that the individual harmonic
distortions of the other sequence harmonics are all less than
1.2% before and after load change. Table II, detailed THDs
and rms values of the currents are summarized.

The above results are obtained under 12.5 KHz as prede-
fined switching frequency. Fig. 4 and Fig. 5 present a com-
parison between fixed-frequency and free-frequency sliding
mode control performances for two predefined values of the
switching frequency.

The switching frequencies shown in Fig. 4(a) and Fig. 4(b)

TABLE I
THE MAIN PARAMETERS OF THE SIMULATED SYSTEM.

Phase to neutral voltage source 230V rms, 50Hz
Source inductance Ls = 100µH
DC-bus capacitors C1 = C2 = 5mF
DC-bus voltage reference V ∗

dc = 100V
Inductor filter Lc = 2mH
Switching frequency reference f∗s = 12.5kHz
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Fig. 4. Switching frequency with free- and fixed-frequency sliding mode control.
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Fig. 5. a-phase wave with free- and fixed-frequency sliding mode control.

TABLE II
DETAILED THDS AND RMS VALUES OF THREE-PHASE AND NEUTRAL

CURRENTS BEFORE AND AFTER ACTIVE FILTERING.

3-phase, t < 0.2s t < 0.2s
Neutral Before After Before After
THD(%)
a-phase 28.29 01.70 26.15 02.53
b-phase 27.67 01.48 24.83 02.00
c-phase 23.76 01.76 23.59 02.09
Neutral 31.31 – 31.31 –
RMS
a-phase 54.03 54.42 98.42 98.00
b-phase 58.74 54.53 105.57 97.51
c-phase 65.21 54.50 108.57 97.58
Neutral 13.10 – 13.10 –

result from a sliding mode control under free-frequency using

hysteresis comparators with fixed-bandwidth chosen such that
the resulting switching frequencies turn around 12.5 KHz and
20 KHz respectively. In this way the hysteresis bandwidth for
the Fig. 4(a) is fixed ±3A and ±2.5A for the Fig. 4(b). As
it can be seen from the two figures, the frequency presents
large oscillations (about 60% of the average value). For the

TABLE III
a-PHASE CURRENT THDS WITH FREE-FREQUENCY AND

FIXED-FREQUENCY SLIDING MODE CONTROL.

THD%
t < 0.2s t > 0.2s

Fixed-bandwidth ±3A 01.27 02.27
Fixed-frequency 12.5KHz 01.70 02.53
Fixed-bandwidth ±2.5A 01.23 02.26
Fixed-frequency 20KHz 01.43 02.33



proposed fixed-frequency the instantaneous hysteresis band-
widths computed with respect to the previous frequencies and
the instantaneous equivalent control are illustrated respectively
in Fig. 4(c) and Fig. 4(d). Remark that these bandwidths are
not constant, however the instantaneous switching frequencies
resulting from these bandwidths are almost constant as shown
in Fig. 4(e) and Fig. 4(f).

Now for the same conditions, the source current in the
a-phase is illustrated in Fig. 5 respectively with using free-
frequency and fixed-frequency control. The total harmonic
distortions are recapitulated in Table III, in this way, it appears
that the free-frequency control presents a small superiority in
term of current tracking, but no significant difference emerge,
in fact the THDs obtained with the two methods are strongly
within the standard limits.

VI. CONCLUSION

In this paper, a sliding mode control under fixed switching
frequency of three-phase three-leg voltage source inverter
based four-wire shunt active filter using hysteresis comparators
to generate the switching signals is achieved. The system is
called to compensate distorted and unbalanced currents under
non-ideal main voltages. A detailed theoretical analysis of
sliding mode and the problematic of the switching frequency
limitation is illustrated with simple manner. The adopted
solution which consists to use a variable hysteresis band for
the switching signals generating has been verified through
computer simulation and very satisfactory results have been
obtained, in this way, it was verified that the proposed fixed
frequency control can conserve the excellent quality of the free
frequency control in term of current THD improvement with
maintaining the switching frequency nearly constant. As per-
spectives, the present control seems to be applied successfully
to medium or high power electronics converters, like multilevel
structures based compensators in power system where a fixed
switching frequency is often recommended because of the high
power exchange.
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