

 Solution of Unit Commitment Problem Using
Improved Shuffled Frog Leaping Algorithm

J.Mary Anita

Research Scholar, School of Electrical Sciences, Noorul Islam University
Kumaracoil, India.(e-mail: anitajayaseelan@rediffmail.com)

Dr. I. Jacob Raglend

Professor, School of Electrical Sciences, Noorul Islam University
 Kumaracoil, India (e-mail: jacobraglend@rediffmail.com)

D.P.Kothari

General Director, Vindhya Group of Institutions
 Indore, India (e-mail: dpk0710@yahoo.com)

Abstract: This paper presents a new approach for
solving Unit commitment (UC) problem of thermal
units based on a new evolutionary algorithm known
as Shuffled Frog Leaping Algorithm (SFLA). The
integer coded algorithm is developed based on the
behavior of group of frogs searching for a location
that has the maximum amount of available food. This
algorithm involves local search and shuffling process
and these are repeated until a required convergence
is reached. The efficiency and effectiveness of the
SFLA is improved by introducing a cognition
component which allows the frog to adjust its
position according to the thinking of the frog itself
along with global and local best of the population. In
this proposed method of SFLA for the UC problem,
the scheduling variables are coded as integers, so
that the minimum up/down time constraints can be
handled directly without using any penalty functions.
To verify the performance of the proposed algorithm
it is applied to the IEEE 14, 30, 56,118 bus systems
and 10, 20 unit systems for a one day scheduling
period. The results of 10 and 20 units systems are
compared with the existing methods available in the
literature. The results obtained are quite encouraging
for the Unit Commitment problem when compared
with the existing methods. The algorithm and
simulation are carried out using Matlab software.

Key Words: Shuffled Frog Leaping Algorithm, Frogs,
Unit commitment, Economic Dispatch, Local Search,
Integer Coded Unit Commitment
Abbreviations
T -Time horizon of Unit commitment (hrs)
PD

t- Real power demand at tth hour (MW)
Pi- Real power generation of ith Unit (MW)
Xi- Commitment Status of ith Unit
Pimax- Maximum real power generation of ith
 Unit (MW)
Pimin- Minimum real power generation of ith Unit
(MW)
SUCi- Start- up cost of ith unit ($)
RDi- Allowable change in real power of ith unit
SDTi -Shut down duration of ith unit(hrs)
MDTi- Minimum down time of ith unit (hrs)
MUTi- Minimum up time of ith unit (hrs)
HSCi-Hot startup cost of ith unit ($)
CSCi- Cold start up cost of ith unit ($)
CSHi- Cold start hour of ith unit(hrs)
N-No., of generating units
C- No., of cycles
Ti

c- Duration of cth cycle of ith unit (hrs)

1. Introduction
Operating under the present competitive

environment, Unit Commitment (UC) is

essential since a significant amount of savings
can be obtained by a sound UC decision. UC is a
process of determining the minimal production
cost generator turn ON/turn OFF schedule and
real power outputs of committed units while
meeting the forecasted demand over a
scheduling horizon of usually between 24hrs to
168hrs (1 day- 7 days). The obtained UC
schedule should also satisfy the global
constraints (power balance, spinning reserve and
environmental) and local constraints like
operational and physical constraints of every
unit [1] [2] [3]. Since it has to satisfy more
number of constraints the UC Problem is a
complex, non-linear, mixed integer optimization
problem. UCP’s combinatorial nature curtails
any attempt to develop a rigorous mathematical
optimization method.

Mathematical solution to UCP involves
simultaneous solution of two sub problems. (i)
The mixed integer non-linear programming
problem of determining the generating units to
be committed each hour of the planning horizon,
while considering system capacity requirements.
(ii)The quadratic programming problem of
economic dispatch among the committed units
during every specific hour of operation.

Complete enumeration can give an
optimal solution but its excessive computational
complexity and computational reserve
requirements have made it not suitable for large
scale real time systems. The need for practical,
cost-effective UC solutions led to the
development of UC algorithms.

 In Literature there exist more no of
methods to solve UCP [4]. The available
approaches may be (i) numerical solution
techniques such as Priory List (PL), Dynamic
programming (DP) [5], Lagrangian relaxation,
Branch and bound, and MIP. The PL is simple
and fast but always led to a solution of higher
operating cost. DP suffers with the problem of
sub optimal solution while truncating some of
the non-feasible solution, to reduce its
computational time. The computational
requirements increases with system size which
limits DP to very small sized systems.

In LR [6] method the feasible solution is
generated by an appropriate co-ordination
technique while minimizing the (duality gap)
difference between the primal and dual objective

functions. LR is modifiable to the model
characteristics of specific utilities of power
system. The constraints can be easily added to
the main objective function but the major
drawbacks are its sensitivity and the availability
of dual optimal solution. (ii) The stochastic
search methods such as Genetic Algorithm
(GA), [7], [8], [9], Particle Swarm Optimization
(PSO) [11] [25], Ant colony optimization, and
Bacterial foraging (BF) [13]. These methods are
capable of handling complex nonlinear
constraints to provide a high quality solution.
Several GA approaches are reported in literature
[18], [19], [20], [21] &[27].

Usually GA approaches use genetic
guided search for the primal UC problem
variables. GA suffers with long computation
time due its random selection of GA operator.
Integer coded GA for UC is more efficient than
binary coded when accompanied by a suitable
GA operator. Evolutionary programming (EP)
differs from GA from the method of solution
coding and selection of candidates for
reproduction.

 Bacterial foraging algorithm is based on
the foraging behavior of E.coli bacteria present
in the human intestine. An integer coded UC
using BFA is reported in [13]. In [17] straight
forward (SF) is presented which decomposes the
UC into three sub problems. This method is
based on linearization of quadratic cost
functions of the generating units.

Decomposition and co-ordination of
constraints are discussed in[23] [24]. Semi
definite programming methods have also been
used in solving UCP.[26].

The combination of EA’s with local
search was named memetic algorithms (MA’s).
MA’s have been found more successful and
efficient and more effective than traditional
EA’s for same problem domains. SFLA is one
among the available memetic algorithm. Eusuff
and Lansey first introduced SFLA [14], [15],
[16] in 2003.

This method is based on the behavior of
frogs search for the location that has the
maximum amount of available food. Possible
solutions are randomly generated to create the
initial population of frogs. And these frogs are
grouped into memeplexes. Memetic evolution
step (local search) is carried out within every

memeplex and a shuffling is done between the
memeplexes. This process is repeated till a
required convergence is reached. This algorithm
has been successfully applied for several
engineering optimization problems.

The integer coded UC [10] is used. The
minimum up/down constraints are directly coded
hence no need for any penalty function for these
constraints. The performance of this algorithm is
tested for various IEEE systems such as 14, 30,
56, 118 bus systems and 10, 20 generating unit
systems for one day scheduling.

The organization of this paper is as follows.
In section 2 the mathematical model of the UCP
is presented. Section 3 details the idea of
shuffled frog leaping algorithm and the
introduction of cognitive component to modify
the leaping rule. In section 4 the implementation
of improved SFLA along with their
mathematical equations is discussed. In section 5
& 6 the simulation results and conclusion are
discussed respectively.

2. Mathematical modeling of UC

The total operating cost of electrical energy
includes fuel cost, start up cost and shut down
cost. The fuel costs are calculated using the data
of unit heat rate & fuel price information which
is normally a quadratic equation of power output
of each generator at each hour determined by
Economic Dispatch(ED).
 𝐹! 𝑃! = 𝐴! + 𝐵!𝑃! + 𝐶!𝑃!! (1)
Where, Ai, Bi, Ci are coefficients of cost matrix.
The total fuel cost for the entire scheduling
horizon ‘T’ is given by
 𝑇𝐹𝐶 = 𝐹!𝑃! ∗ 𝑋!!

!!! (𝑡)!
!!! 	
 	
 	
 	
 	
 	
 	
 (2)

 Where, Xi (t) is the status of ith
unit at tth hour.

Startup cost is the cost involved in
bringing the thermal unit online. Start up costs is
expressed as a function of the number of hours
the units has been shut down, (Exponential when
cooling and linear when banking). Shut down
costs are defined as a fixed amount for each
unit/shutdown. However it is not taken into
account in this paper.

A simplified start up cost model is used
as follows.

𝑆𝑈𝐶! =
𝐻𝑆𝐶! , 𝑖𝑓 𝑀𝐷𝑇! ≤ 𝐷𝑇! < 𝑀𝐷𝑇! + 𝐶𝑆𝐻!
𝐶𝑆𝐶! , 𝑖𝑓 𝐷𝑇! > 𝑀𝐷𝑇! + 𝐶𝑆𝐻!

 (3)

 There are several constraints that must be
satisfied by the UCP.

i) System power balance
The sum of generation of all the committed units
at tth hour must be greater than or equal to the
demand at a particular hour ‘t’.

𝑋! 𝑡 𝑃! 𝑡 ≤ 𝑃! 𝑡 , 𝑡 = 1,2,3…… .𝑇!
!!! (4)

ii) System spinning reserve
requirements

In order to maintain certain degree of
reliability an excess capacity of generation is
essential to immediately take over when a
running unit fails, or unexpected load occurs. A
fixed reserve policy is used in this paper and the
mathematical equation is given by	
 	
 	
 	
 	
 	
 	

𝑋! 𝑡 𝑃! 𝑡 ≤ 𝑃! 𝑡 + 𝑃! 𝑡 ,
 𝑡 = 1,2,3…… .𝑇

!
!!! (5)

iii) Min up/down time
A committed unit can be turned off only

after it satisfies its minimum up time values, at
the same time, a reserved unit can be turned on
only after it satisfies, its min down time. This is
due to the fact that the temperature of a thermal
unit can be increased or decreased only

gradually.
𝑇!! ≥ 𝑀𝑈𝑇! 𝑖𝑓 𝑇!! > 0
−𝑇!! ≥ 𝑀𝐷𝑇! 𝑖𝑓 𝑇!! < 0 (6)

Where, Ti
c is a signed integer representing

ON/OFF status duration of cth operating cycle
of the ith unit.

iv) Initial Operating status of
generating units

The initial operating status of every unit
should take the last day’s previous schedule into
account, so that every unit satisfies it’s
minimum up/down time.

v) Maximum/Minimum power limits
Every unit has its own

maximum/minimum power level of generation,
beyond and below which it cannot generate
 𝑃!"!# ≤ 𝑃!! ≤ 𝑃!"#$ (7)

vi) Ramp rate constraints
 Since, the temperature of a thermal unit
can only be increased or decreased gradually;
the output also can be increased or decreased
within a limit. The response rate constraints of
the unit limits the power generation and is given
by 𝑃!"#$(𝑡) = min (𝑃!"#$,𝑃!!!! + 𝜏𝑅𝐷!)	

 𝑃!"!#(𝑡) = max (𝑃!"!# ,𝑃!!!! + 𝜏𝑅𝐷!)	
 	
 	
 	
 (8)
Where τ=60 min.

3. Improved shuffled frog leaping
algorithm

(A). Original Shuffled Frog Leaping Algorithm
SFLA is a metaheuristic optimization

method which combines the GA’s memetic
evolution and PSO’s social behavior. It is a
combination of deterministic and random
strategies. The deterministic approach allows the
algorithm to use the search space effectively to
guide its heuristic search and the random
approach ensures flexibility and robustness of
the search process.

 SFLA mainly based on the behavior of
group of frogs searching for the location that has
the maximum amount of available food. This
algorithm is capable of solving discrete and
continuous optimization problems. It is also
capable of solving non-linear non-differentiable,
multi modal optimization problems.

This algorithm has been successfully
applied for several engineering applications like
bridge deck repair, water source distribution,
determination of optimal discrete pipe size for
new pipe networks, data clustering, job shop
scheduling etc, The most promising benefit of
this algorithm is its faster convergence speed.

The SFLA involves a population of
possible solutions defined by a set of virtual
frogs. This set of virtual frogs is partitioned into
subsets know as memeplexes. The memeplexes
can be perceived as a set of parallel frog cultures
attempting to reach some goal. Frog leaping
improves an individual frog and enhances its
performance towards the goal. Within each
memeplex each frog holds different ideas and
the idea of each frog can be used to infect the
ideas of other frogs.

The process of passing information
between the frogs of a memeplex is known as
local search or memetic evolution step. After a
defined number of memetic evolution step the
virtual frogs are shuffled and reorganized so that
the quality of memeplex is improved. Shuffling
enhances the meme quality after infection and
ensures the cultural evolution towards any
particular interest.

The process of memetic evolution and
shuffling are repeated unit a required
convergence is reached. This is given
graphically in Fig.1. The following steps are
involved in SFLA.

 Fig.1. Flow chart of SFLA

Step: I. Formation of Initial population
 1) Population size (no. of frogs) P is chosen

 2) P no. of frogs is generated randomly
within the search space.
 3) The position of every frog is defined as
 Xi=Xi

1,Xi
2,………..Xi

D, Where D is the
no. of variables
 4) The fitness of search frog is calculated as

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
!

! !
+ 𝐶, 𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑓 𝑥 + 𝐶, 𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
 (9)

Where, f(x) is the objective function and c is a
constant to ensure the fitness a positive value.

Step: II. Grouping of Frogs into Memeplexes:
1) The frogs are sorted in descending order

according to their fitness values.
2) The entire population of ‘P’ frogs are

grouped into ‘M’ memeplexes, and each
memeplex is formed so that each memeplex
consists of ‘N’ no of frogs (P=MXN).

3) The partitioning of memeplexes is done so
that each memeplex have frogs with lower
and higher fitness values. For this the first
frog goes to 1st memeplex, the second frog
goes to 2nd memeplex, the mth frog to mth
memeplex and m+1th frog goes to 1st
memeplex. This procedure is illustrated in
Fig.2.

 Fig. 2. Formation of Memeplexes

Step: III Local search process: (Memetic
evolution step)
1) Within each memeplex, the frogs with worst

(Xw) & best (Xb) fitness values are identified.
Also the frog with global fitness Xg is also
identified.

2) The frog with worst fitness is leaped
towards the best frog by a random vector.

	
 	
 	
 	
 	
 	
 	
 𝐷! = 𝑟𝑎𝑛𝑑 1 ∗ 𝑋! − 𝑋! 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (10)	
 	
 	
 	
 	
 	
 	

 𝑋! = 𝑋! + 𝐷! 𝐷!"!# < 𝐷! < 𝐷!"#$ (12)

3) The fitness of the new leaped worst frog is
calculated. If there is no improvement in
fitness, the leaping vector is calculated with 	

𝐷! = 𝑟𝑎𝑛𝑑 1 ∗ 𝑋! − 𝑋! 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (11)

 𝑋! = 𝑋! + 𝐷! 𝐷!"!# < 𝐷! < 𝐷!"#$	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4) The fitness of the new leaped worst frog is
 calculated. If there is no improvement,
 then Xw is replaced with a new random
 frog. This is illustrated in Fig. 3.
4) The steps 1, 2, 3, & 4 are repeated for some

 specific number of iterations.

Fig.3. Frog Leaping Rule

Step: IV Shuffling Process:
 After local search in every memeplex is
completed shuffling of memeplex is done, and
the frogs are reorganized in descending order of
fitness values and again grouped into memeplex
and local search process is carried out.
Step: V. Steps I, II, III, IV are repeated until
any one of the following conditions is satisfied.
 i) The relative change in the fitness of the
global frog within a number of consecutive
shuffling iterations is less than a pre-specified
tolerance.
 ii) The maximum predefined number of
shuffling iterations have been reached.
(B). Modified Frog Leaping Rule

In the original SFL algorithm, every
frog updates its position according to the best
solution because of the influence of the local
best solution. According to the frog leaping rule
used in SFLA the leaping of the frog to its new
position is restricted between the worst and the
best frog position, and not beyond the best frog
position. It may restrict the search space of the
local search algorithm. This may lead to slower
convergence and convergence within local
optimal point. The above mentioned problem is
overcome by the introduction of the cognitive

component. The ability and stability of the
algorithm is improved by the introduction of the
cognition component [15]. Introduction of this
component allows the frog to adjust its position
according to the thinking of the frog itself along
with best frog within the memeplex or the global
best frog of the population. The coordinates of
current position of each frog is entered into the
formulas for the measure of error of the estimate
of target values, and it is moved towards the new
position. This is repeated for a defined number
of times. While moving towards the multivariate
space, the individuals compare their current
error value with the best error value they have
attained at any point up to that iteration. The
lowest error value is termed as the best error
value Pbestj., and the position where the Pbestj
is evaluated is termed as Pj. The difference Pi -
Xi indicates the distance between the individual’s
previous and current position. Each element

Fig.4. Improved Frog Leaping Rule

of the above distance vector is weighted by a
positive random number in the range [0
1].Because of the introduction of this component
the frog is not restricted to move along the line
segment. Now, the leaping of the frog takes
place in a widened search space avoiding
premature convergence (i.e) definitely beyond
the best frog, the global optimal point. The
mathematical equation of the new modified frog
leaping rule is given by the equation (12). Figure
(4) represents the modified frog leaping rule.

𝐷! = 𝑟𝑎𝑛𝑑 1 ∗ 𝑃! − 𝑋! + 𝑟𝑎𝑛𝑑 1 ∗ (𝑋! − 𝑋!)
 𝑋! = 𝑋! + 𝐷! 𝐷!"!# < 𝐷! < 𝐷!"#$ (12)

The modified local search process of
improved SFLA is illustrated pictorially in
Fig.5.

Fig.5.Local Search Process of Improved Shuffled
Frog Leaping Algorithm

4. Implementation of SFLA to UCP

Definition of frog position
The position of a frog in integer coded SFLA for
UCP consists of a sequence of alternatively

signed integers representing the duration of
ON/OFF cycles of units during the scheduling
horizon. A positive integer in the frog vector
represents the duration of continuous ON state
of a unit whereas the negative integer represents
the duration of continuous OFF state of a unit.
 The size of a frog is decided by the no
of units (N) and no of cycles(C). No of cycles(C)
is determined by the load peaks and minimum
up and down time of units.In this paper the
load profile with two load peaks as given in Fig.
6 is considered. From Fig. 6 it is understood that
the peak units will have 5 cycles and the base
units and intermediate units will have 1&3
respectively.

Fig.6. Load Curve for 24Hrs

So, the no of cycles vary between 1 and
5. But for simplicity and to increase the search
space, the peaking unit cycles are taken for base
and intermediate units and their remaining
cycles are assumed to be zero. For a 10 unit, 5
cycle system the size of the frog for a one day
scheduling is 1×10×5. Definition of frog from
ON/OFF cycle duration of units and the UC
schedule is illustrated in Table. 1.

Creating Initial Population
A part of a frog representing the

operating schedule of a particular unit during the
scheduling horizon should be formed such that

𝑇!! = 𝑇!
!!! . The values of Ti

c are randomly
generated to form the initial population. The
procedure is as follows.

Formation of first cycle: (Ti
1)

 Ti
1 is selected so that the unit continues the

operating mode(ON/OFF) of the last cycle of

the previous day scheduling (Ti
0) for at least as

many hours required so that no units are
violating its minimum up/down time values.

𝑇!! =
+𝑟𝑎𝑛𝑑 max 0,𝑀𝑈𝑇! − 𝑇!! ,𝑇 𝑖𝑓 𝑇!! > 0
– 𝑟𝑎𝑛𝑑 max 0,𝑀𝐷𝑇! + 𝑇!

! ,𝑇 𝑖𝑓 𝑇!
! < 0

 (13)

Formation of in between cycles (Ti
c, 1<c<C)

 The cycles between the initial and last
cycles are generated considering the units
minimum up/down time, the scheduling horizon
(T) and the duration of previous cycles (i.e.)
duration of (c-1) prior cycles.
If Ti

c-1 <0, indicates cycle ‘c’ is positive and it
represents an ON status of ith unit.

 𝑇!! =
+𝑟𝑎𝑛𝑑 𝑀𝑈𝑇! ,𝑅𝑇!!!! , 𝑖𝑓 𝑅𝑇!!!! > 𝑀𝑈𝑇!
+𝑅𝑇!!!!, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (14)
If Ti

c-1 >0, indicates cycle ‘c’ is negative and it
represents an OFF status of ith unit.

𝑇!! =
−𝑟𝑎𝑛𝑑 𝑀𝐷𝑇! ,𝑅𝑇!!!! , 𝑖𝑓 𝑅𝑇!!!! > 𝑀𝐷𝑇!
−𝑅𝑇!!!!, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (15)
Where, RTi

c-1 indicates the remaining scheduling
period after allocating the first (c-1) cycles.
 𝑅𝑇!!!! = 𝑇 − 𝑇!

!!!!
!!! (16)

Formation of last cycle (Ti
C)

The duration of last cycle ‘C’ is decided
by the duration of C-1 prior cycles (i.e.)
Ti

C=RTi
C-1 If due to random generation of cycle

duration the entire scheduling interval (T) is
completed within the first few cycles ‘c’ < C
then the remaining c+1….. C cycles are assigned
to Zero. From this type of representation it is
well known that the minimum up / down time
constraint is satisfied in the coding stage itself
and hence there is no need for any penalty
function for this constraint in the objective
function.

Leaping of worst solution
 After formation of memeplex, the local
search process is carried out in each memeplex.
Leaping of worst frog towards the best frog is
done by the random vector
𝐷! = 𝑟𝑎𝑛𝑑 1 ∗ 𝑃! − 𝑋! + 𝑟𝑎𝑛𝑑 1 ∗ 𝑋! − 𝑋!
or by the random vector
𝐷! = 𝑟𝑎𝑛𝑑 1 ∗ 𝑃! − 𝑋! + 𝑟𝑎𝑛𝑑 1 ∗ (𝑋! − 𝑋!)
Addition of this vector to the Xw may lead to
change in Xw and it needs the following
modifications.

i) Sum of all Ti
c of unit ‘i’ will not be equal to

‘T’. To adjust the following correction is

done. 𝑇!!,𝑇!!,… . .𝑇!! =
!.∗ !!

!,!!
!,…..!!

! ,!!!,!,….!

!!
!!

!!!
 (17)

 (ii) The rand (1) function generates a random
number between 0 and 1 the parameter which is
a non-integer number and this may lead the
parameter of Xw to a non-integer values. But Xw
should be an integer vector. Hence to convert the
non integer parameters of Xw to integer the
following correction is done by
 𝑋!! = 𝑅𝑜𝑢𝑛𝑑(𝑋!) (18)

Table: 1
Sample frog for 10 units 5 cycle system

 (iii) The above round of correction may again
lead to the sum not equal to ‘T’ Hence to adjust
the values of Ti

c, the last non-zero cycle is
adjusted as follows,
 𝑇!! = 𝑇 − 𝑇!! , 𝑖 = 1,2,… .𝑁!!!

!!! (19)
iv) After generation of new Xw, the minimum
up / down time should be adjusted so that there
is no violation in this constraint. The correction
in ‘c’ cycle should be followed by correction in
‘c+1’ cycle for adjusting the sum of Ti

c to ‘T’
For Ti1>0, if Ti1<max (0,MUTi - Ti

0), then the
duration of cycle 1& cycle 2 of unit ‘i’ are
changed as 	
 	
 	
 	
 	
 	
 	
 	

𝑇!! = 𝑇!! − 𝑇!! +max 0,𝑀𝑈𝑇! − 𝑇!!

𝑇!! = max 0,𝑀𝑈𝑇! − 𝑇!!
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (20)	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

For Ti1<0 if – Ti1< max (0,MDTi + Ti

0), then
the duration of cycle 1&cycle 2 of unit ‘i’ are
changed as

𝑇!! = 𝑇!! − 𝑇!! +max 0,𝑀𝐷𝑇! + 𝑇!!

𝑇!! = −max 0,𝑀𝐷𝑇! + 𝑇!!
(21)

For Ti

c>0 if Ti
c <MUTi for c=2, …..C-1, the

cycles ‘c’ and c+1 of unit ‘i’ are changed

 𝑇!
!!! = 𝑇!!!! − 𝑇!! +𝑀𝑈𝑇!

𝑇!! = 𝑀𝑈𝑇!
 (22)

For Ti

c <0 if – Ti
c <MDTi for c=2….. C-1 the

cycles ‘c’ and c+1 of unit ‘i’ are changed

 𝑇!
!!! = 𝑇!!!! − 𝑇!! −𝑀𝐷𝑇!

𝑇!! = 𝑀𝐷𝑇!
 (23)

After all the above corrections are carried out,
on Xw, the Economic Dispatch (ED) should be
carried out for each hour of scheduling horizon
for all committed units. Then the fitness value is
calculated. The sample frog is given in Table.1	

Computation of fitness function
 The objective function of UC using
SFLA has two terms, and they are the total
operation cost and the penalty functions for
violating system constraints (spinning reserve &
power balance).

 𝑇𝐶 = 𝐹𝐶!!

!!! 𝑃!! ∗ 𝑋! 𝑡 +!
!!! 𝑆𝑈! + 𝑆𝐷! (24)

 The penalty function has two terms.
The first term for spinning reserve violation and
is given by

=!"# 𝜔 !
!!
 𝑅(𝐷! + 𝑅! − 𝑋! 𝑡 𝑃!"#$!!

!!!
!
!!!

 (25)
 The second term for excessive capacity
is given by

=!"# 𝜔 !
!!
 𝑅(!

!!! 𝑋!(𝑡)𝑃!"!#! − 𝐷!)!
!!! 	
 	
 	
 	
 	
 	
 (26)

 Where ‘ω’ depends on maximum
operating cost of the system over a scheduling
period ‘T’. 	
 	
 	
 	
 ω	
 =	
 α	
 T	
 𝐹𝐶! 𝑃!"#$!

!!! 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (27)
 where α is a constant.
 Now the objective is to minimize the
fitness function
 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐴 (𝑇𝐶 + �!"# + �!"#) (28)
A= 108. ‘A’ is a system dependent constant
added for avoiding the fitness value from

Unit 1 2 3 4 5

1

T1
1 T1

2 T1
3 T1

4 T1
5

24 0 0 0 0

2

T2
1 T2

2 T2
3 T2

4 T2
5

24 0 0 0 0

3

T3
1 T3

2 T3
3 T3

4 T3
5

-4 19 -1 0 0

4

T4
1 T4

2 T4
3 T4

4 T4
5

-5 17 -2 0 0

5

T5
1 T5

2 T5
3 T5

4 T5
5

15 -3 3 -3 0

6

T6
1 T6

2 T6
3 T6

4 T6
5

-8 6 -3 4 -3

7

T7
1 T7

2 T7
3 T7

4 T7
5

-8 6 -5 3 -2

8

T8
1 T8

2 T8
3 T8

4 T8
5

-9 4 -6 1 -4

9 T9
1 T9

2 T9
3 T9

4 T9
5

-10 2 -12 0 0

10 T10
1 T10

2 T10
3 T10

4 T10
5

-11 1 -12 0 0

1 2 3 4
1.24

1.26

1.28

1.3

1.32
x 10

4

Shuffling Iterations

O
pt

im
al

 C
os

t($
)

1 2 3 4 5 6 7
5.645

5.65

5.655

5.66

5.665

5.67
x 10

5

Shuffling Iterations

O
pt

im
al

 C
os

t($
)

1 2 3 4 5 6
1.134

1.136

1.138

1.14

1.142

1.144
x 10

6

Shuffling Iterations

O
pt

im
al

 C
os

t($
)

obtaining too small values. This should be of
the order of the system maximum operating cost.

4. Simulation results
 The proposed Improved SFLA to UC has
been tested for various IEEE test bust systems
such as IEEE 14, 30, 56, 118 buses and also for
10, 20 unit system for a scheduling period of
24hrs. The load and system data for 10 unit
system is listed in appendix (1) & (2). The
system data for 20 unit system is obtained by
duplicating the 10 unit system data and the load
is doubled. The proposed algorithm was also
tested for IEEE56bus, IEEE118bus systems and
their load and generator data are taken from
www.motor.ece.iit.edu/data/IEEE118

 Table: 2 .	

Generator schedule of 30 bus system (6 units)

For 24 hrs

Hour Power Generations of Units(MW)
1 2 3 4 5 6

1 87.3 33.7 15.0 10.0 10.0 10.0
2 111.2 38.4 16.4 10.0 10.0 10.0
3 138.5 42.9 17.6 10.0 10.0 10.0
4 170.9 47.3 18.8 10.0 10.0 10.0
5 185.1 49.0 19.3 10.0 10.0 10.0
6 175.2 47.8 19.0 10.0 10.0 10.0
7 162.5 45.2 18.3 0 10.0 10.0
8 135.2 40.8 17.0 0 10.0 10.0
9 127.8 38.0 16.2 0 10.0 0

10 103.1 32.9 15.0 0 10.0 0
11 91.5 30.5 15.0 0 10.0 0
12 102.3 32.7 15.0 0 10.0 0
13 110.4 34.4 15.2 0 10.0 0
14 122.2 36.9 15.9 0 10.0 0
15 140.7 40.4 16.9 0 10.0 0
16 160.1 44.0 17.9 0 10.0 0
17 171.4 46.1 18.5 0 10.0 0
18 167.4 45.3 18.3 0 10.0 0
19 163.3 44.6 18.1 0 10.0 0
20 154.5 42.9 17.6 0 10.0 0
21 137.5 39.8 16.7 0 10.0 0
22 129.8 36.4 15.8 0 0 0
23 113.1 32.9 15.0 0 0 0
24 88.2 27.8 15.0 0 0 0

Fig (7) Convergence of Improved SFLA for 30Bus

(6 units) system

Fig (8) Convergence of Improved SFLA for

118Bus (54 units) system

 The reserve requirement was 10% of the
hourly load in all cases. The main parameters of
SFLA have been taken from paper [22]. The
initial population size for improved SFLA has
been taken as 200 frogs. Grouping of 200 frogs
is done between 20 memeplexes each with 10
frogs. Memetic evolution step is done for 10
iterations before each shuffling process. The
improved SFLA program is developed and
executed in MATLAB 2011.

Fig (9) Convergence of Improved SFLA for a 10
unit system

Fig (10) Convergence of Improved SFLA for 20
Units system

 The results of generation scheduling along
with their real power generation of the best
solution for 30Bus (6 Units), 118Bus (54Units),
20 Units system are tabulated in Table 2 to 4.
Table 5 gives the comparison of optimal cost
between the original and improved SFLA for all
test systems.
 The shuffling iterations taken by original
SFLA and improved SFLA are listed in Table 6.
The optimal solution for all test systems is
obtained between 4 to 7 shuffling iterations.

Table: 3 Generator schedule of 118 bus system (54 units) for 24 hrs

Table 3 contd.,
Generator schedule of 118 bus system (54 units) for 24 hrs

Hour
Power Generations of Units(MW)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0 0 0 201.5 201.5 0 0 0 0 201.5 350 0 0 0 0 0 0 0
2 0 0 0 179.2 179.2 0 0 0 0 179.2 350 0 0 0 0 0 0 0
3 0 0 0 150 135.7 0 0 0 0 135.7 350 0 0 0 0 0 0 0
4 0 0 0 150 100 0 0 0 0 100 105.1 0 0 0 0 0 0 0
5 0 0 0 150 100 0 0 0 0 100 278.1 0 0 0 0 0 0 0
6 0 0 0 150 146.6 0 0 0 0 146.6 350 0 0 0 0 0 0 0
7 0 0 0 201.3 201.3 0 0 0 0 201.3 350 0 0 0 0 0 0 0
8 0 0 0 150 236.2 0 25 0 0 261.2 350 0 0 25 0 25 0 0
9 0 0 0 150 100 0 25 0 0 291.2 350 0 0 25 0 25 0 0

10 0 0 0 265 300 0 100 0 0 300 350 0 0 100 0 25 0 0
11 0 0 0 150 300 0 100 0 0 300 350 0 0 100 0 100 0 0
12 0 0 0 175 300 0 25 0 0 300 350 0 0 25 0 25 0 0
13 0 0 0 150 100 0 25 0 0 276.3 350 0 0 25 0 25 0 0
14 0 0 0 150 100 0 25 0 0 171.2 350 0 0 25 0 25 0 0
15 0 0 0 265 300 0 100 0 0 300 350 0 0 100 0 25 0 0
16 0 0 0 235 300 0 100 0 0 300 350 0 0 100 0 100 0 0
17 0 0 0 300 300 0 25 0 0 300 350 0 0 25 0 25 0 0
18 0 0 0 300 300 0 100 0 0 300 350 0 0 100 0 25 0 0
19 5 0 0 150 300 0 100 0 0 300 350 0 0 100 0 100 0 0
20 5 0 0 300 300 0 100 0 30 300 350 0 0 100 0 100 0 0
21 0 5 30 300 300 0 100 0 0 300 350 0 0 100 0 100 0 0
22 0 5 0 150 300 0 100 0 0 300 350 0 30 100 30 100 8 8
23 0 0 0 175 300 0 100 0 0 300 350 30 0 100 0 25 0 0
24 0 0 0 150 300 0 100 0 0 300 350 0 30 25 8 25 8 8

Hour
Power Generations of Units(MW)

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
1 0 250 250 0 0 200 200 420 420 201.3 0 0 0 0 0 0 201.3
2 0 250 250 0 0 200 200 398.7 398.7 179.2 0 0 0 0 0 0 179.2
3 0 250 250 0 0 200 200 354.2 354.2 135.7 0 0 0 0 0 0 150
4 0 207 207 0 0 95.2 95.2 27303 273.3 80 0 0 0 0 0 0 150
5 0 244.5 244.5 0 0 187.9 187.9 311.8 311.8 94.5 0 0 0 0 0 0 150
6 0 250 250 0 0 200 196.6 365.3 365.3 146.6 0 0 0 0 0 0 150
7 0 250 250 0 0 200 200 420 420 201.3 0 0 0 0 0 0 201.3
8 0 250 250 0 0 200 200 0 420 420 261.3 0 0 0 0 0 0 261.3
9 0 250 250 25 25 200 200 25 420 420 291.3 0 0 0 0 25 25 291.3

10 0 250 250 25 25 200 200 25 420 420 300 0 0 0 0 25 25 300
11 25 250 250 25 25 200 200 25 420 420 300 0 0 0 0 25 25 300
12 25 250 250 25 25 200 200 25 420 420 300 0 0 0 0 25 25 300
13 25 250 250 25 25 200 200 25 420 420 276.3 0 0 0 0 25 25 276.3
14 25 250 250 25 25 200 200 25 420 420 246.3 0 0 0 0 25 25 246.3
15 25 250 250 25 25 200 200 25 420 420 300 0 0 0 0 25 25 300
16 100 250 250 25 25 200 200 25 420 420 300 0 0 0 0 25 25 300
17 25 250 250 25 25 200 200 25 420 420 300 80 0 0 0 25 25 300
18 25 250 250 25 25 200 200 25 420 420 300 80 0 0 0 25 25 300
19 100 250 250 100 25 200 200 25 420 420 300 80 0 0 0 25 25 300
20 100 250 250 10 100 200 200 100 420 420 300 80 0 0 0 25 25 300
21 100 250 250 100 100 200 200 100 420 420 300 80 0 0 0 25 25 300
22 25 250 250 25 25 200 200 25 420 420 300 0 0 5 0 25 25 300
23 25 250 250 25 25 200 200 25 420 420 300 0 0 0 5 25 25 300
24 25 250 250 25 25 200 200 25 420 420 300 0 10 0 0 25 25 300

Table 3 contd.,
Generator schedule of 118 bus system (54 units) for 24 hrs

 Table: 4 Generator schedule of 20 units system for 24 hrs

Hour
Power Generations of Units(MW)

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
1 0 0 300 200 0 0 201.3 201.3 201.3 0 0 0 0 0 0 0 0 0
2 0 0 300 179.2 0 0 179.2 179.2 179.2 0 0 0 0 0 0 0 0 0
3 0 0 285.7 135.7 0 0 135.7 135.7 135.7 0 0 0 0 0 0 0 0 0
4 0 0 207 57 0 0 100 100 100 0 0 0 0 0 0 0 0 0
5 0 0 244.5 94.5 0 0 100 100 100 0 0 0 0 0 0 0 0 0
6 0 0 296.6 146.6 0 0 146.6 146.6 146.6 0 0 0 0 0 0 0 0 0
7 0 0 300 200 0 0 201.3 201.3 201.3 0 0 0 0 0 0 0 0 0
8 0 0 300 161.3 0 0 261.3 261.3 261.3 0 0 25 0 0 25 25 0 0
9 25 0 291.3 166.3 0 0 291.3 291.3 291.3 0 25 25 0 0 25 25 25 0

10 25 0 300 200 0 0 300 300 100 0 25 25 0 0 25 25 25 0
11 25 0 300 200 0 0 300 300 200 0 25 25 0 0 25 25 25 0
12 25 0 300 200 0 0 300 300 100 0 25 25 0 0 25 25 25 0
13 25 0 276.3 151.3 0 0 276.3 276.3 276.3 0 25 25 0 0 25 25 25 0
14 25 0 271.3 171.3 0 0 246.3 246.3 246.3 0 25 25 0 0 25 25 25 0
15 25 0 300 200 0 0 300 300 100 0 25 25 0 0 25 25 25 0
16 25 0 300 200 0 0 300 300 100 0 25 25 0 0 25 25 25 0
17 25 0 300 200 0 0 300 300 100 0 25 25 0 0 25 25 25 0
18 25 0 300 200 0 0 300 300 195 0 25 25 0 0 25 25 25 0
19 25 0 300 200 0 0 300 300 115 0 25 25 0 0 25 25 25 0
20 25 0 300 200 0 0 300 300 175 0 25 25 0 0 25 25 25 0
21 25 0 300 200 0 0 300 300 220 0 25 25 0 0 25 25 25 0
22 25 0 300 200 0 0 300 300 100 0 25 25 0 0 25 25 25 0
23 25 0 300 200 8 0 300 300 104 8 25 25 0 0 25 25 25 0
24 25 10 300 0 0 20 300 228 100 0 25 25 8 25 0 0 25 25

Hour
Power Generations of Units(MW)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 455 455 0 0 25 0 0 0 0 0 290 150 0 0 25 0 0 0 0 0
2 455 455 0 0 25 0 0 0 0 0 390 150 0 0 25 0 0 0 0 0
3 455 345 0 0 25 0 0 0 0 0 455 395 0 0 25 0 0 0 0 0
4 455 455 0 0 40 0 0 0 0 0 455 455 0 0 25 0 0 0 0 0
5 455 455 130 0 55 0 0 0 0 0 455 455 0 0 25 0 0 0 0 0
6 455 400 130 130 25 0 0 0 0 0 455 450 130 0 25 0 0 0 0 0
7 455 455 130 130 162 0 0 0 0 0 455 228 130 130 25 0 0 0 0 0
8 455 455 130 130 35 0 0 0 0 0 455 455 130 130 25 0 0 0 0 0
9 378 455 130 130 162 80 25 0 0 0 455 455 130 130 25 20 25 0 0 0

10 453 455 130 130 162 80 85 55 0 0 455 455 130 130 25 20 25 10 0 0
11 455 455 130 130 162 80 85 55 10 0 455 455 130 130 103 20 25 10 10 0
12 455 455 130 130 162 80 85 55 55 55 455 455 130 130 93 20 25 10 10 10
13 453 455 130 130 162 80 85 55 0 0 455 455 130 130 25 20 25 10 0 0
14 378 455 130 130 162 80 25 0 0 0 455 455 130 130 25 20 25 0 0 0
15 455 455 130 130 35 0 0 0 0 0 455 455 130 130 25 0 0 0 0 0
16 455 455 130 130 0 0 0 0 0 0 455 215 130 130 0 0 0 0 0 0
17 455 455 130 130 0 0 0 0 0 0 455 150 130 95 0 0 0 0 0 0
18 455 455 130 130 0 80 0 0 0 0 455 215 130 130 0 20 0 0 0 0
19 450 455 130 130 25 20 0 0 0 0 455 455 130 130 0 20 0 0 0 0
20 401 455 130 130 162 80 25 10 10 10 455 455 130 130 162 20 25 10 0 0
21 393 455 130 130 162 80 25 10 0 0 455 455 130 130 0 20 25 0 0 0
22 265 455 130 130 0 0 25 0 0 0 455 455 130 130 0 0 25 0 0 0
23 455 455 130 0 0 0 0 0 0 0 455 175 130 0 0 0 0 0 0 0
24 455 455 0 0 0 0 0 0 0 0 455 235 0 0 0 0 0 0 0 0

The results of improved SFLA for 10, 20 units
systems are compared with the results of
LRGA [7], ICGA [10] & original SFLA [12]
and are listed in Table 16. It is obvious that
SFLA has satisfactory results in comparison
with other method. Fig. 7 to 10 shows the
convergence rate of improved SFLA for the
various systems considered in this work.

Table 5
Comparison of optimal cost of SFLA with improved

SFLA

Sl.No System
No.of

generating
Units

Optimal
Cost($)
SFLA

Optimal
Cost($)

Improved
SFLA

1 IEEE14BUS 5 11171 10910
2 IEEE 30BUS 6 12768 12491
3 IEEE56BUS 7 51645 48875
4 IEEE 118BUS 54 1665800 1656700
5 10 UNIT 10 564769 564690
6 20 UNIT 20 1135800 1135800

It is better when compared to the 15 to 16
shuffling iterations taken by ordinary SFLA [12]
to reach almost the same optimal solution. From
Table (15) it can be concluded that the
convergence rate of SFLA is improved by the
introduction of cognition component.

Table 6

Comparison of shuffling iterations of SFLA with
improved SFLA

Table: 7 Comparison of operation cost of various
methods

No. of
Units

Operational Cost ($)
LRGA

[7]
IGCA
[10]

SFLA
[12]

Improved
SFLA

10 565825 566404 564769 564690
20 1130660 1124892 1135800 1135800

6. Conclusion

The solution of UCP actually means,
physically feasible and financially viable
scheduling of generators. The existing methods
for solving UCP have their inherent limitations
of relaxation and computational efficiency. In
this paper, a new evolutionary algorithm known
as improved SFLA for UC problem was
presented. The integer coding is used to code the
parameters of UCP. This type of coding directly
satisfies the min up/down time constraints, and
no need for any penalty function for this
constraint.

 The performance of the proposed
algorithm is tested for a one day scheduling for
various test systems with 5 to 54 units. The
results of 10 and 20 unit systems are compared
with LR & ICGA and original SFLA method.
The results of other systems are compared with
original SFLA method. The simulation results
shows that the production cost of SFLA is less
than the other methods such as LR & ICGA.
Also the test result shows that the introduction
of cognition component improves the
convergence rate of SFLA.
 Our future work is directed towards the
inclusion of emission and valve point loading
effect along with the existing operational
constraints.

7. References

[1]. A. J. Wood and B. F. Wollenberg, Power
Generation Operation and Control, New York:
Wiley, 1984
[2]. D.P. Kothari and J.S.Dhillon, Power System
Optimization, Prentice Hall of India Pvt. Ltd., New
Delhi, 2011.

 System
No. of

generating
Units

No. of
Shuffling
Iterations

SFLA

No. of
Shuffling
Iterations
Improved

SFLA
1 IEEE14BUS 5 12 4
2 IEEE30BUS 6 16 4
3 IEEE56BUS 7 14 5
4 IEEE118BUS 54 14 7
5 10 UNIT 10 16 6
6 20 UNIT 20 16 5

[3]. D.P.Kothari and I.J.Nagrath, Modern Power
System Analysis, 4th Edition, McGraw Hill, New
York, 2011.
[4]. N.P. Padhy, Unit commitment- A Bibliography
Survey, IEEE Trans. Power Systems, vol.19,no. 2, pp
1196-1205, May 2004.
[5]. W.L. Snyder, H.D. Powell, and J.C. Rayburn,
Dynamic Programming Approach to Unit
Commitment, IEEE Trans. Power Systems, vol.2, no.
2,pp.339-347, May 1987.
[6]. S.Virmani, E.C. Adrian, K.Imhof,
Implementation of a Lagrangian based Unit
Commitment Problem, IEEE Trans. Power
Systems,vol.4, no.4,pp 1373-1380, Nov.1989.
[7]. S.A.Kazarlis, A.G.Bakitris, and V.Petridis, A
Genetic Algorithm Solution to the Unit Commitment
Problem , IEEE Trans. Power Systems, vol.11,no. 1,
pp 83-92, Feb,1996.
[8]. K.S.Swarup and S.Yamashiro, Unit Commitment
Solution Methodology using Genetic Algorithm ,
IEEE Trans. Power Systems, vol.17,no. 1, pp.87-91.,
Feb 2002.
[9]. J.M.Arroyo and A.J.Conejo, A Parallel Repair
Genetic Algorithm to Solve Unit Commitment
Problem , IEEE Trans. Power Systems, vol.17, no. 4,
pp.1216-1224, Nov 2002.
[10]. I.G. Damousis, A.G. Bakirtzis,and P.S.
Dokopolous , A Solution to Unit Commitment
Problem using Integer Coded Genetic Algorithm ,
IEEE Trans. Power Systems, vol.19,no. 2, pp.1165-
1172, May 2004.
[11]. W.Xiong , M.J.Li,and Y.Cheng, An Improved
Particle Swarm Optimization Algorithm for Unit
Commitment Problem , in Proc. ICICTA, 2008.
[12]. Javad Ebrahimi, Seyed Hossein Hosseinain,
Gevorg B. Harehpatian, Unit Commitment Problem
Solution Using Shuffled Frog Leaping Algorithm ,
IEEE Trans. Power Systems, vol.26, no.2, pp.573-
581,May 2011.
[13]. M.Eslamian, as.ah.ahosseinian, B.vahidi,
Bacterial Foraging based Solution to the Unit
Commitment Problem, IEEE Trans. Power
Systems,vol.24, no. 3, pp.1478-1488, Aug 2009.
[14]. M.M.Eusuff,K.E.Lansey, F.Pasha, Shuffled
Frog leaping: A Memetic Meta-Heuristic for Discrete
Optimization, Eng Optimiz, vol.38,no.2,pp.129-154,
2006
[15]. X.Zhang, X.Hu,G.Cui, Y.Wang, Y.Niu, An
Improved Shuffled Frog Leaping Algorithm With
Cognitive Behavior, in Proc., 7th World Congress,
Intelligent Control and Automation, 2008.
[16]. T.H. Huynh, A Modified Shuffled Frog Leaping
Algorithm for Optimal Tuning of Multivariable PID
Controllers, in proc., ICIT 2008, pp 1-6, 2008.

[17]. S.H.Hosseini A.Khodaei,and F.Aminifar, A
Novel Straightforward Unit Commitment Method For
Large Scale Power Systems , IEEE Trans. Power
Systems, vol.22,no. 4, pp.2134-2143, Nov 2007.
[18]. G.B. Sheble and T.T.Maifeld, Unit
Commitment By Genetic Algorithm and Expert
System , Electrical Power Systems Research, vol.30,
no.2, pp.115-121,July/Aug.1994.
[19]. X.Ma,A.A.El-keib, R.E.Smith, and H.Ma, A
Genetic Algorithm Based Approach to Thermal Unit
Commitment, Electrical Power Systems Research,
vol.34, pp.29-36,1995.
[20]. A.Rudolf and R.Bayreleithner, A Genetic
Algorithm for Solving the Unit Commitment Problem
of a Hydro-Thermal Power System , IEEE Trans.
Power Systems, vol.14, pp.1460-1468, Nov 1999.
[21]. W.G.Xing and F.F.Wu, Genetic Algorithm
Based Unit Commitment With Energy contract ,Int.
J. Elect. Power ,vol.24, no.5 pp.329-336,June 2002.
[22]. J.Kennedy and R.C. Eberhart, Particle Swarm
Optimization, in Proc, IEEE Conf. Neural Networks,
1995, vol.4, pp.1942-1948.
[23]. Qing Xia, Y.H.Song, Boming Zhang, Congqng
Kang, Niande Xiang, Effective Decomposition and
co-ordination Algorithms for unit Commitment and
economic Dispatch with security constraints, Electric
Power System Research, vol.53, pp.39-45, 2000.
[24] Bo Lu, Mohammed Shahidephour, Unit
commitment with flexible Generating Units”, IEEE
Trans. Power Systems, vol.20, no.2, pp.1022-1034,
May 2005.
[25]. J.Kennedy and R.C. Eberhart, Particle Swarm
Optimization, in Proc, IEEE Conf. Neural Networks,
1995, vol.4, pp.1942-1948.
[26].Bai. X & Wei.H, Semi –definite programming –
based method for security constrained unit
commitment with operational and optimal power flow
constraints, IET Genrn, Trans, and Distr. 2009, Vol3
(2), pp 182-197.
[27].C.Christopher Columbus, Sishaj P. Simon,
Parallel hybrid enhanced inherited GA based SCUC
in a distributed cluster, Artificial Intelligence
research, Sep 2012, Vol1. No.1 ,pp96-106.

APPENDIX: 1
LOAD DATA FOR ALL TEST SYSTEMS

Hour 1 2 3 4 5 6 7 8 9 10 11 12
Load
(MW) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500

Hour 13 14 15 16 17 18 19 20 21 22 23 24
Load
(MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

APPENDIX:2
10 UNIT SYSTEM DATA

	

	

 Pmax Pmin A B C MUi MDi Hcost Ccost Chour IniState
Unit1 455 150 0.00048 16.19 1000 8 8 4500 9000 5 8
Unit2 455 150 0.00031 17.26 970 8 8 5000 10000 5 8
Unit3 130 20 0.002 16.60 700 5 5 550 1100 4 -5
Unit4 130 20 0.00211 16.5 680 5 5 560 1120 4 -5
Unit5 162 25 0.00398 19.70 450 6 6 900 1800 4 -6
Unit6 80 20 0.00712 22.26 370 3 3 170 340 2 -3
Unit7 85 25 0.00079 27.74 480 3 3 260 520 2 -3
Unit8 55 10 0.00413 25.92 660 1 1 30 60 0 -1
Unit9 55 10 0.00222 27.27 665 1 1 30 60 0 -1

Unit10 55 10 0.00173 27.79 670 1 1 30 60 0 -1

