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Abstract:  This paper presents a new approach for 
solving Unit commitment (UC) problem of thermal 
units based on a new evolutionary algorithm known 
as Shuffled Frog Leaping Algorithm (SFLA). The 
integer coded algorithm is developed based on the 
behavior of group of frogs searching for a location 
that has the maximum amount of available food. This 
algorithm involves local search and shuffling process 
and these are repeated until a required convergence 
is reached. The efficiency and effectiveness of the 
SFLA is improved by introducing a cognition 
component which allows the frog to adjust its 
position according to the thinking of the frog itself 
along with global and local best of the population. In 
this proposed method of SFLA for the UC problem, 
the scheduling variables are coded as integers, so 
that the minimum up/down time constraints can be 
handled directly without using any penalty functions. 
To verify the performance of the proposed algorithm 
it is applied to the IEEE 14, 30, 56,118 bus systems 
and 10, 20 unit systems for a one day scheduling 
period. The results of 10 and 20 units systems are 
compared with the existing methods available in the 
literature. The results obtained are quite encouraging 
for the Unit Commitment problem when compared 
with the existing methods. The algorithm and 
simulation are carried out using Matlab software. 
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Abbreviations 
T -Time horizon of Unit commitment (hrs) 
PD

t- Real  power demand at tth hour (MW) 
Pi- Real power generation of ith Unit (MW) 
Xi- Commitment Status of ith Unit 
Pimax- Maximum real power generation of ith   
          Unit (MW) 
Pimin- Minimum real power generation of ith Unit    
(MW) 
SUCi- Start- up cost of ith unit ($) 
RDi-  Allowable change in real power of ith unit 
SDTi -Shut down duration of ith unit(hrs) 
MDTi- Minimum down time of ith unit (hrs) 
MUTi- Minimum up time of ith unit (hrs) 
HSCi-Hot startup cost of ith unit ($) 
CSCi- Cold start up cost of ith unit ($) 
CSHi- Cold start hour of  ith unit(hrs) 
N-No., of generating units  
C- No., of cycles 
Ti

c- Duration of cth cycle of ith unit (hrs) 
 

1. Introduction 
Operating under the present competitive 

environment, Unit Commitment (UC) is 



 

essential since a significant amount of savings 
can be obtained by a sound UC decision. UC is a 
process of determining the minimal production 
cost generator turn ON/turn OFF schedule and 
real power outputs of committed units while 
meeting the forecasted demand over a 
scheduling horizon of usually between 24hrs to 
168hrs (1 day- 7 days). The obtained UC 
schedule should also satisfy the global 
constraints (power balance, spinning reserve and 
environmental) and local constraints like 
operational and physical constraints of every 
unit [1] [2] [3]. Since it has to satisfy more 
number of constraints the UC Problem is a 
complex, non-linear, mixed integer optimization 
problem. UCP’s combinatorial nature curtails 
any attempt to develop a rigorous mathematical 
optimization method. 

Mathematical solution to UCP involves 
simultaneous solution of two sub problems. (i) 
The mixed integer non-linear programming 
problem of determining the generating units to 
be committed each hour of the planning horizon, 
while considering system capacity requirements. 
(ii)The quadratic programming problem of 
economic dispatch among the committed units 
during every specific hour of operation. 

Complete enumeration can give an 
optimal solution but its excessive computational 
complexity and computational reserve 
requirements have made it not suitable for large 
scale real time systems. The need for practical, 
cost-effective UC solutions led to the 
development of UC algorithms. 

 In Literature there exist more no of 
methods to solve UCP [4]. The available 
approaches may be (i) numerical solution 
techniques such as Priory List (PL), Dynamic 
programming (DP) [5], Lagrangian relaxation, 
Branch and bound, and MIP. The PL is simple 
and fast but always led to a solution of higher 
operating cost. DP suffers with the problem of 
sub optimal solution while truncating some of 
the non-feasible solution, to reduce its 
computational time. The computational 
requirements increases with system size which 
limits DP to very small sized systems.  

In LR [6] method the feasible solution is 
generated by an appropriate co-ordination 
technique while minimizing the (duality gap) 
difference between the primal and dual objective 

functions. LR is modifiable to the model 
characteristics of specific utilities of power 
system. The constraints can be easily added to 
the main objective function but the major 
drawbacks are its sensitivity and the availability 
of dual optimal solution. (ii) The stochastic 
search methods such as Genetic Algorithm 
(GA), [7], [8], [9], Particle Swarm Optimization 
(PSO) [11] [25], Ant colony optimization, and 
Bacterial foraging (BF) [13]. These methods are 
capable of handling complex nonlinear 
constraints to provide a high quality solution. 
Several GA approaches are reported in literature 
[18], [19], [20], [21] &[27].  

Usually GA approaches use genetic 
guided search for the primal UC problem 
variables. GA suffers with long computation 
time due its random selection of GA operator. 
Integer coded GA for UC is more efficient than 
binary coded when accompanied by a suitable 
GA operator. Evolutionary programming (EP) 
differs from GA from the method of solution 
coding and selection of candidates for 
reproduction. 

 Bacterial foraging algorithm is based on 
the foraging behavior of E.coli bacteria present 
in the human intestine. An integer coded UC 
using BFA is reported in [13]. In [17] straight 
forward (SF) is presented which decomposes the 
UC into three sub problems. This method is 
based on linearization of quadratic cost 
functions of the generating units. 

Decomposition and co-ordination of 
constraints are discussed in[23] [24]. Semi 
definite programming methods have also been 
used in solving UCP.[26]. 

The combination of EA’s with local 
search was named memetic algorithms (MA’s). 
MA’s have been found more successful and 
efficient and more effective than traditional 
EA’s for same problem domains. SFLA is one 
among the available memetic algorithm. Eusuff 
and Lansey first introduced SFLA [14], [15], 
[16] in 2003.  

This method is based on the behavior of 
frogs search for the location that has the 
maximum amount of available food. Possible 
solutions are randomly generated to create the 
initial population of frogs. And these frogs are 
grouped into memeplexes. Memetic evolution 
step (local search) is carried out within every 



 

memeplex and a shuffling is done between the 
memeplexes. This process is repeated till a 
required convergence is reached. This algorithm 
has been successfully applied for several 
engineering optimization problems. 

The integer coded UC [10] is used. The 
minimum up/down constraints are directly coded 
hence no need for any penalty function for these 
constraints. The performance of this algorithm is 
tested for various IEEE systems such as 14, 30, 
56, 118 bus systems and 10, 20 generating unit 
systems for one day scheduling.  

The organization of this paper is as follows. 
In section 2 the mathematical model of the UCP 
is presented. Section 3 details the idea of 
shuffled frog leaping algorithm and the 
introduction of cognitive component to modify 
the leaping rule. In section 4 the implementation 
of improved SFLA along with their 
mathematical equations is discussed. In section 5 
& 6 the simulation results and conclusion are 
discussed respectively. 
 
2.  Mathematical modeling of UC 

The total operating cost of electrical energy 
includes fuel cost, start up cost and shut down 
cost. The fuel costs are calculated using the data 
of unit heat rate & fuel price information which 
is normally a quadratic equation of power output 
of each generator at each hour determined by 
Economic Dispatch(ED).  
       𝐹! 𝑃! = 𝐴! +   𝐵!𝑃! +   𝐶!𝑃!!                     (1) 
Where, Ai, Bi, Ci  are coefficients of cost matrix.  
The total fuel cost for the entire scheduling 
horizon ‘T’ is given by 
                        𝑇𝐹𝐶 = 𝐹!𝑃! ∗   𝑋!!

!!! (𝑡)!
!!! 	
  	
  	
  	
  	
  	
  	
         (2) 

  Where, Xi (t) is the status of ith  
unit at tth hour.  

Startup cost is the cost involved in 
bringing the thermal unit online. Start up costs is 
expressed as a function of the number of hours 
the units has been shut down, (Exponential when 
cooling and linear when banking). Shut down 
costs are defined as a fixed amount for each 
unit/shutdown. However it is not taken into 
account in this paper.  

A simplified start up cost model is used 
as follows. 

𝑆𝑈𝐶! =
𝐻𝑆𝐶!   , 𝑖𝑓  𝑀𝐷𝑇! ≤ 𝐷𝑇! < 𝑀𝐷𝑇! + 𝐶𝑆𝐻!
𝐶𝑆𝐶!  , 𝑖𝑓  𝐷𝑇! > 𝑀𝐷𝑇! + 𝐶𝑆𝐻!                                   

 (3) 

      There are several constraints that must be 
satisfied by the UCP. 

i) System power balance 
The sum of generation of all the committed units 
at tth   hour must be greater than or equal to the 
demand at a particular hour ‘t’. 

𝑋!   𝑡 𝑃! 𝑡 ≤ 𝑃!   𝑡 ,      𝑡 = 1,2,3…… .𝑇!
!!!  (4) 

ii) System spinning reserve 
requirements 

In order to maintain certain degree of 
reliability an excess capacity of generation is 
essential to immediately take over when a 
running unit fails, or unexpected load occurs. A 
fixed reserve policy is used in this paper and the 
mathematical equation is given by	
  	
  	
  	
  	
  	
  	
  

𝑋!   𝑡 𝑃! 𝑡 ≤ 𝑃!   𝑡 +   𝑃! 𝑡 ,
                                                                  𝑡 = 1,2,3…… .𝑇

!
!!!          (5) 

iii) Min up/down time 
A committed unit can be turned off only 

after it satisfies its minimum up time values, at 
the same time, a reserved unit can be turned on 
only after it satisfies, its min down time. This is 
due to the fact that the temperature of a thermal 
unit can be increased or decreased only 

gradually. 
𝑇!! ≥   𝑀𝑈𝑇!   𝑖𝑓  𝑇!!   > 0
−𝑇!! ≥   𝑀𝐷𝑇!   𝑖𝑓  𝑇!!   < 0            (6) 

Where, Ti
c   is a signed integer representing 

ON/OFF status duration of cth    operating cycle 
of the ith   unit. 

iv) Initial Operating status of 
generating units 

The initial operating status of every unit 
should take the last day’s previous schedule into 
account, so that every unit satisfies it’s 
minimum up/down time. 

v) Maximum/Minimum power limits 
Every unit has its own 

maximum/minimum power level of generation, 
beyond and below which it cannot generate  
                                    𝑃!"!# ≤ 𝑃!! ≤ 𝑃!"#$          (7) 

vi) Ramp rate constraints 
  Since, the temperature of a thermal unit 
can only be increased or decreased gradually; 
the output also can be increased or decreased 
within a limit. The response rate constraints of 
the unit limits the power generation and is given 
by  𝑃!"#$(𝑡) = min  (𝑃!"#$   ,𝑃!!!! + 𝜏𝑅𝐷!)	
  
              𝑃!"!#(𝑡) = max  (𝑃!"!#  ,𝑃!!!! + 𝜏𝑅𝐷!)	
  	
  	
  	
   (8) 
Where τ=60 min.  
 



 

3.  Improved shuffled frog leaping 
algorithm 

(A). Original Shuffled Frog Leaping Algorithm 
SFLA is a metaheuristic optimization 

method which combines the GA’s memetic 
evolution and PSO’s social behavior. It is a 
combination of deterministic and random 
strategies. The deterministic approach allows the 
algorithm to use the search space effectively to 
guide its heuristic search and the random 
approach ensures flexibility and robustness of 
the search process. 

 SFLA mainly based on the behavior of 
group of frogs searching for the location that has 
the maximum amount of available food. This 
algorithm is capable of solving discrete and 
continuous optimization problems. It is also 
capable of solving non-linear non-differentiable, 
multi modal optimization problems.  

This algorithm has been successfully 
applied for several engineering applications like 
bridge deck repair, water source distribution, 
determination of optimal discrete pipe size for 
new pipe networks, data clustering, job shop 
scheduling etc, The most promising benefit of 
this algorithm is its faster convergence speed. 

The SFLA involves a population of 
possible solutions defined by a set of virtual 
frogs. This set of virtual frogs is partitioned into 
subsets know as memeplexes. The memeplexes 
can be perceived as a set of parallel frog cultures 
attempting to reach some goal.  Frog leaping 
improves an individual frog and enhances its 
performance towards the goal. Within each 
memeplex each frog holds different ideas and 
the idea of each frog can be used to infect the 
ideas of other frogs. 

The process of passing information 
between the frogs of a memeplex is known as 
local search or memetic evolution step. After a 
defined number of memetic evolution step the 
virtual frogs are shuffled and reorganized so that 
the quality of memeplex is improved. Shuffling 
enhances the meme quality after infection and 
ensures the cultural evolution towards any 
particular interest.  

The process of memetic evolution and 
shuffling are repeated unit a required 
convergence is reached. This is given 
graphically in Fig.1. The following steps are 
involved in SFLA. 

 
 

    Fig.1. Flow chart of SFLA 
 
Step: I.   Formation of Initial population 
      1) Population size (no. of frogs) P is chosen 



 

     2) P no. of frogs is generated randomly 
within the search space.  
     3) The position of every frog is defined as 
                 Xi=Xi

1,Xi
2,………..Xi

D,  Where D is the 
no. of variables 
     4) The fitness of search frog is calculated as   

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
!

! !
+ 𝐶,   𝑓𝑜𝑟  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑓 𝑥 + 𝐶, 𝑓𝑜𝑟  𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛
    (9)   

Where, f(x) is the objective function and c is a 
constant to ensure the fitness a positive value. 

Step: II.  Grouping of Frogs into Memeplexes: 
1) The frogs are sorted in descending order 

according to their fitness values. 
2) The entire population of ‘P’ frogs are 

grouped into ‘M’ memeplexes, and each 
memeplex is formed so that each memeplex 
consists of ‘N’ no of frogs (P=MXN). 

3) The partitioning of memeplexes is done so 
that each memeplex have frogs with lower 
and higher fitness values. For this the first 
frog goes to 1st memeplex, the second frog 
goes to 2nd memeplex, the mth frog to mth 
memeplex and m+1th frog goes to 1st 
memeplex. This procedure is illustrated in 
Fig.2. 

 
               Fig. 2. Formation of Memeplexes 

Step: III Local search process: (Memetic 
evolution step)        
1) Within each memeplex, the frogs with worst 

(Xw) & best (Xb) fitness values are identified. 
Also the frog with global fitness Xg is also 
identified. 

2)  The frog with worst fitness is leaped 
towards the best frog by a random vector.  

	
  	
  	
  	
  	
  	
  	
  𝐷! = 𝑟𝑎𝑛𝑑 1 ∗ 𝑋! − 𝑋! 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (10)	
  	
  	
  	
  	
  	
  	
  
              𝑋! = 𝑋! + 𝐷!       𝐷!"!# <    𝐷!   <   𝐷!"#$        (12)   

3) The fitness of the new leaped worst frog is 
calculated. If there is no improvement in 
fitness, the leaping vector is calculated with 	
  
𝐷! = 𝑟𝑎𝑛𝑑 1 ∗ 𝑋! − 𝑋! 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (11) 

                𝑋! = 𝑋! + 𝐷!       𝐷!"!# <    𝐷!   <   𝐷!"#$	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4)    The fitness of the new leaped worst frog is 
       calculated.  If there is no improvement, 
       then Xw is replaced with a new random  
       frog. This is illustrated in Fig. 3. 
4)  The steps 1, 2, 3, & 4 are repeated for some  

 specific number of iterations.  
 

 
 

Fig.3. Frog Leaping Rule 

Step: IV Shuffling Process: 
           After local search in every memeplex is 
completed shuffling of memeplex is done, and 
the frogs are reorganized in descending order of 
fitness values and again grouped into memeplex 
and local search process is carried out. 
Step: V.     Steps I, II, III, IV are repeated until 
any one of the following conditions is satisfied.  
 i) The relative change in the fitness of the 
global frog within a number of   consecutive 
shuffling iterations is less than a pre-specified 
tolerance. 
 ii) The maximum predefined number of 
shuffling iterations have been reached. 
(B). Modified Frog Leaping Rule 

In the original SFL algorithm, every 
frog updates its position according to the best 
solution because of the influence of the local 
best solution. According to the frog leaping rule 
used in SFLA the leaping of the frog to its new 
position is restricted between the worst and the 
best frog position, and not beyond the best frog 
position. It may restrict the search space of the 
local search algorithm. This may lead to slower 
convergence and convergence within local 
optimal point. The above mentioned problem is 
overcome by the introduction of the cognitive 



 

component. The ability and stability of the 
algorithm is improved by the introduction of the 
cognition component [15]. Introduction of this 
component allows the frog to adjust its position 
according to the thinking of the frog itself along 
with best frog within the memeplex or the global 
best frog of the population. The coordinates of 
current position of each frog is entered into the 
formulas for the measure of error of the estimate 
of target values, and it is moved towards the new 
position. This is repeated for a defined number 
of times. While moving towards the multivariate 
space, the individuals compare their current 
error value with the best error value they have 
attained at any point up to that iteration. The 
lowest error value is termed as the best error 
value Pbestj., and the position where the Pbestj  
is evaluated is termed as  Pj. The difference  Pi -
Xi indicates the distance between the individual’s 
previous and current position. Each element  

 
Fig.4. Improved Frog Leaping Rule 

of the above distance vector is weighted by a 
positive random number in the range [ 0 
1].Because of the introduction of this component 
the frog is not restricted to move along the line 
segment. Now, the leaping of the frog takes 
place in a widened search space avoiding 
premature convergence (i.e) definitely beyond 
the best frog, the global optimal point. The 
mathematical equation of the new modified frog 
leaping rule is given by the equation (12). Figure 
(4) represents the modified frog leaping rule. 

𝐷! = 𝑟𝑎𝑛𝑑 1 ∗ 𝑃! − 𝑋! + 𝑟𝑎𝑛𝑑 1 ∗ (𝑋! − 𝑋!) 
  𝑋! = 𝑋! + 𝐷!       𝐷!"!# <    𝐷!   <   𝐷!"#$                (12)                          
    

The modified local search process of 
improved SFLA is illustrated pictorially in 
Fig.5.  

 

 
 

Fig.5.Local Search Process of Improved Shuffled 
Frog Leaping Algorithm 

 
4. Implementation of SFLA to UCP 

Definition of frog position 
The position of a frog in integer coded SFLA for 
UCP consists of a sequence of alternatively 



 

signed integers representing the duration of 
ON/OFF cycles of units during the scheduling 
horizon. A positive integer in the frog vector 
represents the duration of continuous ON state 
of a unit whereas the negative integer represents 
the duration of continuous OFF state of a unit.  
 The size of a frog is decided by the no 
of units (N) and no of cycles(C). No of cycles(C) 
is determined by the load peaks and minimum 
up and down time   of units.In this paper the 
load profile with two load peaks as given in Fig. 
6 is considered. From Fig. 6 it is understood that 
the peak units will have 5 cycles and the base 
units and intermediate units will have 1&3 
respectively.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.6. Load Curve for 24Hrs 

So, the no of cycles vary between 1 and 
5.  But for simplicity and to increase the search 
space, the peaking unit cycles are taken for base 
and intermediate units and their remaining 
cycles are assumed to be zero. For a 10 unit, 5 
cycle system the size of the frog for a one day 
scheduling is 1×10×5. Definition of frog from 
ON/OFF cycle duration of units and the UC 
schedule is illustrated in Table. 1. 

Creating Initial Population 
A part of a frog representing the 

operating schedule of a particular unit during the 
scheduling horizon should be formed such that 

𝑇!! = 𝑇!
!!! .  The values of Ti

c  are randomly 
generated to form the initial population. The 
procedure is as follows. 

Formation of first cycle: (Ti
1) 

      Ti
1 is selected so that the unit continues the 

operating  mode(ON/OFF) of the last cycle of 

the previous day scheduling (Ti
0) for at least as 

many hours required so that no units are 
violating its minimum up/down time values. 

𝑇!! =
+𝑟𝑎𝑛𝑑 max 0,𝑀𝑈𝑇! − 𝑇!! ,𝑇   𝑖𝑓  𝑇!! > 0  
– 𝑟𝑎𝑛𝑑 max 0,𝑀𝐷𝑇! + 𝑇!

! ,𝑇   𝑖𝑓  𝑇!
! < 0

 (13)                                  

Formation of in between cycles (Ti
c, 1<c<C) 

 The cycles between the initial and last 
cycles are generated considering the units 
minimum up/down time, the scheduling horizon 
(T) and the duration of previous cycles (i.e.) 
duration of (c-1) prior cycles. 
If Ti

c-1 <0, indicates cycle ‘c’ is positive and it 
represents an ON status of ith unit. 
 

  𝑇!! =
+𝑟𝑎𝑛𝑑 𝑀𝑈𝑇! ,𝑅𝑇!!!! , 𝑖𝑓   𝑅𝑇!!!! > 𝑀𝑈𝑇!
+𝑅𝑇!!!!, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                        

 

                                                                       (14) 
If Ti

c-1 >0, indicates cycle ‘c’ is negative and it 
represents an OFF status of ith unit. 

𝑇!! =
−𝑟𝑎𝑛𝑑 𝑀𝐷𝑇! ,𝑅𝑇!!!! , 𝑖𝑓   𝑅𝑇!!!! > 𝑀𝐷𝑇!
−𝑅𝑇!!!!, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                        

 

                                                                       (15) 
Where, RTi

c-1 indicates the remaining scheduling 
period after allocating the first (c-1) cycles. 
                              𝑅𝑇!!!! = 𝑇 − 𝑇!

!!!!
!!!                      (16)                          

Formation of last cycle (Ti
C) 

The duration of last cycle ‘C’ is decided 
by the duration of C-1 prior cycles (i.e.) 
Ti

C=RTi
C-1 If due to random generation of cycle 

duration the entire scheduling interval (T) is 
completed within the first few cycles ‘c’ < C 
then the remaining c+1….. C cycles are assigned 
to Zero. From this type of representation it is 
well known that the minimum up / down time 
constraint is satisfied in the coding stage itself 
and hence there is no need for any penalty 
function for this constraint in the objective 
function. 

Leaping of worst solution  
             After formation of memeplex, the local 
search process is carried out in each memeplex. 
Leaping of worst frog towards the best frog is 
done by the random vector    
𝐷! = 𝑟𝑎𝑛𝑑 1 ∗ 𝑃! − 𝑋! + 𝑟𝑎𝑛𝑑 1 ∗ 𝑋! − 𝑋!  
or by the  random vector    
𝐷! = 𝑟𝑎𝑛𝑑 1 ∗ 𝑃! − 𝑋! + 𝑟𝑎𝑛𝑑 1 ∗ (𝑋! − 𝑋!) 
Addition of this vector to the Xw may lead to 
change in Xw and it needs the following 
modifications. 



 

i) Sum of all Ti
c of unit ‘i’ will not be equal to 

‘T’. To adjust the following correction is 

done.   𝑇!!,𝑇!!,… . .𝑇!! =
!.∗ !!

!,!!
!,…..!!

! ,!!!,!,….!

!!
!!

!!!
  (17) 

 (ii) The rand (1) function generates a random 
number between 0 and 1 the parameter which is 
a non-integer number and this may lead the 
parameter of Xw to a non-integer values. But Xw 
should be an integer vector. Hence to convert the 
non integer parameters of Xw to integer the 
following correction is done by  
                   𝑋!! = 𝑅𝑜𝑢𝑛𝑑(𝑋!)                     (18) 
 

Table: 1 
Sample frog for 10 units 5 cycle system 

 

 
 
 (iii) The above round of correction may again 
lead to the sum not equal to ‘T’ Hence to adjust 
the values of Ti

c, the last non-zero cycle is 
adjusted as follows,  
  𝑇!! = 𝑇 − 𝑇!!   , 𝑖 = 1,2,… .𝑁!!!

!!!               (19) 
iv)  After generation of new Xw, the minimum  
up / down time should be adjusted so that there 
is no violation in this constraint. The correction 
in ‘c’ cycle should be followed by correction in 
‘c+1’ cycle for adjusting the sum of Ti

c to ‘T’ 
For Ti1>0, if  Ti1<max (0,MUTi - Ti

0), then the 
duration of cycle 1& cycle 2 of unit ‘i’ are 
changed as 	
  	
  	
  	
  	
  	
  	
  	
  

𝑇!! = 𝑇!! − 𝑇!! +max 0,𝑀𝑈𝑇! − 𝑇!!

𝑇!! = max 0,𝑀𝑈𝑇! − 𝑇!!           
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For  Ti1<0 if – Ti1< max (0,MDTi + Ti

0), then 
the duration of cycle 1&cycle 2 of unit ‘i’ are 
changed as   

𝑇!! = 𝑇!! − 𝑇!! +max 0,𝑀𝐷𝑇! + 𝑇!!

𝑇!! = −max 0,𝑀𝐷𝑇! + 𝑇!!                                                                 
(21)  

 
For Ti

c>0 if Ti
c <MUTi for c=2, …..C-1, the 

cycles ‘c’ and c+1 of unit ‘i’ are changed 

     𝑇!
!!! = 𝑇!!!! − 𝑇!! +𝑀𝑈𝑇!

𝑇!! = 𝑀𝑈𝑇!                                                           
               (22) 

 
For Ti

c <0 if – Ti
c <MDTi for c=2….. C-1 the 

cycles ‘c’ and c+1 of unit ‘i’ are changed  

 𝑇!
!!! = 𝑇!!!! − 𝑇!! −𝑀𝐷𝑇!

𝑇!! = 𝑀𝐷𝑇!                                                           
             (23)    

                          
After all the above corrections are carried out, 
on Xw, the Economic Dispatch (ED) should be 
carried out for each hour of scheduling horizon 
for all committed units. Then the fitness value is 
calculated. The sample frog is given in Table.1	
  

Computation of fitness function 
            The objective function of UC using 
SFLA has two terms, and they are the total 
operation cost and the penalty functions for 
violating system constraints (spinning reserve & 
power balance). 
 
  𝑇𝐶 = 𝐹𝐶!!

!!! 𝑃!! ∗ 𝑋! 𝑡 +!
!!! 𝑆𝑈! + 𝑆𝐷!  (24) 

              The penalty function has two terms. 
The first term for spinning reserve violation and 
is given by  

=!"# 𝜔 !
!!
  𝑅( 𝐷! + 𝑅! −    𝑋! 𝑡 𝑃!"#$!!

!!!
!
!!!      

                                                                 (25) 
               The second term for excessive capacity 
is given by 

=!"# 𝜔 !
!!
  𝑅(!

!!! 𝑋!(𝑡)𝑃!"!#! − 𝐷!)!
!!! 	
  	
  	
  	
  	
  	
  (26)                          

             Where ‘ω’ depends on maximum 
operating cost of the system over a scheduling 
period ‘T’. 	
  	
  	
  	
  ω	
  =	
  α	
  T	
   𝐹𝐶! 𝑃!"#$!

!!! 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
       (27) 
  where α is a constant.                                                   
             Now the objective is to minimize the 
fitness function 
 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐴 (𝑇𝐶 + �!"# + �!"#)            (28)            
A= 108. ‘A’ is a system dependent constant 
added for avoiding the fitness value from 

Unit 1 2 3 4 5 
 
1 

T1
1 T1

2 T1
3 T1

4 T1
5 

24 0 0 0 0 
 
2 

T2
1 T2

2 T2
3 T2

4 T2
5 

24 0 0 0 0 
 
3 

T3
1 T3

2 T3
3 T3

4 T3
5 

-4 19 -1 0 0 
 
4 

T4
1 T4

2 T4
3 T4

4 T4
5 

-5 17 -2 0 0 
 
5 

T5
1 T5

2 T5
3 T5

4 T5
5 

15 -3 3 -3 0 
 
6 

T6
1 T6

2 T6
3 T6

4 T6
5 

-8 6 -3 4 -3 
 
7 

T7
1 T7

2 T7
3 T7

4 T7
5 

-8 6 -5 3 -2 
 
8 

T8
1 T8

2 T8
3 T8

4 T8
5 

-9 4 -6 1 -4 

9 T9
1 T9

2 T9
3 T9

4 T9
5 

-10 2 -12 0 0 

10 T10
1 T10

2 T10
3 T10

4 T10
5 

-11 1 -12 0 0 
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obtaining too small values.  This should be of 
the order of the system maximum operating cost.  

 
4.    Simulation results 
            The proposed Improved SFLA to UC has 
been tested for various IEEE test bust systems 
such as IEEE 14, 30, 56, 118 buses and also for 
10, 20 unit system for a scheduling period of 
24hrs. The load and system data for 10 unit 
system is listed in appendix (1) & (2). The 
system data for 20 unit system is obtained by 
duplicating the 10 unit system data and the load 
is doubled. The proposed algorithm was also 
tested for IEEE56bus, IEEE118bus systems and 
their load and generator data are taken from 
www.motor.ece.iit.edu/data/IEEE118 

         Table: 2           .	
  
Generator schedule of 30 bus system (6 units) 

For 24 hrs 
 

Hour  Power Generations of Units(MW) 
1 2 3 4 5 6 

1 87.3 33.7 15.0 10.0 10.0 10.0 
2 111.2 38.4 16.4 10.0 10.0 10.0 
3 138.5 42.9 17.6 10.0 10.0 10.0 
4 170.9 47.3 18.8 10.0 10.0 10.0 
5 185.1 49.0 19.3 10.0 10.0 10.0 
6 175.2 47.8 19.0 10.0 10.0 10.0 
7 162.5 45.2 18.3 0 10.0 10.0 
8 135.2 40.8 17.0 0 10.0 10.0 
9 127.8 38.0 16.2 0 10.0 0 

10 103.1 32.9 15.0 0 10.0 0 
11 91.5 30.5 15.0 0 10.0 0 
12 102.3 32.7 15.0 0 10.0 0 
13 110.4 34.4 15.2 0 10.0 0 
14 122.2 36.9 15.9 0 10.0 0 
15 140.7 40.4 16.9 0 10.0 0 
16 160.1 44.0 17.9 0 10.0 0 
17 171.4 46.1 18.5 0 10.0 0 
18 167.4 45.3 18.3 0 10.0 0 
19 163.3 44.6 18.1 0 10.0 0 
20 154.5 42.9 17.6 0 10.0 0 
21 137.5 39.8 16.7 0 10.0 0 
22 129.8 36.4 15.8 0 0 0 
23 113.1 32.9 15.0 0 0 0 
24 88.2 27.8 15.0 0 0 0 

 
 
 
 
 
 
 
Fig (7)    Convergence of Improved SFLA for 30Bus      

(6 units) system 
 
 
 
 
 

 
Fig (8)    Convergence of Improved SFLA for 

118Bus   (54 units) system 
                   
      The reserve requirement was 10% of the 
hourly load in all cases. The main parameters of 
SFLA have been taken from paper [22]. The 
initial population size for improved SFLA has 
been taken as 200 frogs. Grouping of 200 frogs 
is done between 20 memeplexes each with 10 
frogs. Memetic evolution step is done for 10 
iterations before each shuffling process. The 
improved SFLA program is developed and 
executed in MATLAB 2011.   

 
 
 
 
 
 
 

Fig (9)    Convergence of Improved SFLA for a 10 
unit system 

 
 
 
 
 
 
 

Fig (10)    Convergence of Improved SFLA for 20 
Units system 

 
     The results of generation scheduling along 
with their real power generation of the best 
solution for 30Bus (6 Units), 118Bus (54Units), 
20 Units system are tabulated in Table 2 to 4. 
Table 5 gives the comparison of optimal cost 
between the original and improved SFLA for all 
test systems. 
       The shuffling iterations taken by original 
SFLA and improved SFLA are listed in Table 6. 
The optimal solution for all test systems is 
obtained between 4 to 7 shuffling iterations. 

  



 

Table: 3   Generator schedule of 118 bus system (54 units)   for 24 hrs 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3 contd.,  
Generator schedule of 118  bus system (54 units)   for 24 hrs 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Hour 
Power Generations of Units(MW) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
1 0 0 0 201.5 201.5 0 0 0 0 201.5 350 0 0 0 0 0 0 0 
2 0 0 0 179.2 179.2 0 0 0 0 179.2 350 0 0 0 0 0 0 0 
3 0 0 0 150 135.7 0 0 0 0 135.7 350 0 0 0 0 0 0 0 
4 0 0 0 150 100 0 0 0 0 100 105.1 0 0 0 0 0 0 0 
5 0 0 0 150 100 0 0 0 0 100 278.1 0 0 0 0 0 0 0 
6 0 0 0 150 146.6 0 0 0 0 146.6 350 0 0 0 0 0 0 0 
7 0 0 0 201.3 201.3 0 0 0 0 201.3 350 0 0 0 0 0 0 0 
8 0 0 0 150 236.2 0 25 0 0 261.2 350 0 0 25 0 25 0 0 
9 0 0 0 150 100 0 25 0 0 291.2 350 0 0 25 0 25 0 0 

10 0 0 0 265 300 0 100 0 0 300 350 0 0 100 0 25 0 0 
11 0 0 0 150 300 0 100 0 0 300 350 0 0 100 0 100 0 0 
12 0 0 0 175 300 0 25 0 0 300 350 0 0 25 0 25 0 0 
13 0 0 0 150 100 0 25 0 0 276.3 350 0 0 25 0 25 0 0 
14 0 0 0 150 100 0 25 0 0 171.2 350 0 0 25 0 25 0 0 
15 0 0 0 265 300 0 100 0 0 300 350 0 0 100 0 25 0 0 
16 0 0 0 235 300 0 100 0 0 300 350 0 0 100 0 100 0 0 
17 0 0 0 300 300 0 25 0 0 300 350 0 0 25 0 25 0 0 
18 0 0 0 300 300 0 100 0 0 300 350 0 0 100 0 25 0 0 
19 5 0 0 150 300 0 100 0 0 300 350 0 0 100 0 100 0 0 
20 5 0 0 300 300 0 100 0 30 300 350 0 0 100 0 100 0 0 
21 0 5 30 300 300 0 100 0 0 300 350 0 0 100 0 100 0 0 
22 0 5 0 150 300 0 100 0 0 300 350 0 30 100 30 100 8 8 
23 0 0 0 175 300 0 100 0 0 300 350 30 0 100 0 25 0 0 
24 0 0 0 150 300 0 100 0 0 300 350 0 30 25 8 25 8 8 

Hour 
Power Generations of Units(MW) 

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
1 0 250 250 0 0 200 200  420 420 201.3 0 0 0 0 0 0 201.3 
2 0 250 250 0 0 200 200  398.7 398.7 179.2 0 0 0 0 0 0 179.2 
3 0 250 250 0 0 200 200  354.2 354.2 135.7 0 0 0 0 0 0 150 
4 0 207 207 0 0 95.2 95.2  27303 273.3 80 0 0 0 0 0 0 150 
5 0 244.5 244.5 0 0 187.9 187.9  311.8 311.8 94.5 0 0 0 0 0 0 150 
6 0 250 250 0 0 200 196.6  365.3 365.3 146.6 0 0 0 0 0 0 150 
7 0 250 250 0 0 200 200  420 420 201.3 0 0 0 0 0 0 201.3 
8 0 250 250 0 0 200 200 0 420 420 261.3 0 0 0 0 0 0 261.3 
9 0 250 250 25 25 200 200 25 420 420 291.3 0 0 0 0 25 25 291.3 

10 0 250 250 25 25 200 200 25 420 420 300 0 0 0 0 25 25 300 
11 25 250 250 25 25 200 200 25 420 420 300 0 0 0 0 25 25 300 
12 25 250 250 25 25 200 200 25 420 420 300 0 0 0 0 25 25 300 
13 25 250 250 25 25 200 200 25 420 420 276.3 0 0 0 0 25 25 276.3 
14 25 250 250 25 25 200 200 25 420 420 246.3 0 0 0 0 25 25 246.3 
15 25 250 250 25 25 200 200 25 420 420 300 0 0 0 0 25 25 300 
16 100 250 250 25 25 200 200 25 420 420 300 0 0 0 0 25 25 300 
17 25 250 250 25 25 200 200 25 420 420 300 80 0 0 0 25 25 300 
18 25 250 250 25 25 200 200 25 420 420 300 80 0 0 0 25 25 300 
19 100 250 250 100 25 200 200 25 420 420 300 80 0 0 0 25 25 300 
20 100 250 250 10 100 200 200 100 420 420 300 80 0 0 0 25 25 300 
21 100 250 250 100 100 200 200 100 420 420 300 80 0 0 0 25 25 300 
22 25 250 250 25 25 200 200 25 420 420 300 0 0 5 0 25 25 300 
23 25 250 250 25 25 200 200 25 420 420 300 0 0 0 5 25 25 300 
24 25 250 250 25 25 200 200 25 420 420 300 0 10 0 0 25 25 300 



 

 
Table 3 contd.,  
Generator schedule of 118  bus system (54 units)   for 24 hrs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

    Table: 4   Generator schedule of   20 units system   for 24 hrs 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Hour 
Power Generations of Units(MW) 

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 
1 0 0 300 200 0 0 201.3 201.3 201.3 0 0 0 0 0 0 0 0 0 
2 0 0 300 179.2 0 0 179.2 179.2 179.2 0 0 0 0 0 0 0 0 0 
3 0 0 285.7 135.7 0 0 135.7 135.7 135.7 0 0 0 0 0 0 0 0 0 
4 0 0 207 57 0 0 100 100 100 0 0 0 0 0 0 0 0 0 
5 0 0 244.5 94.5 0 0 100 100 100 0 0 0 0 0 0 0 0 0 
6 0 0 296.6 146.6 0 0 146.6 146.6 146.6 0 0 0 0 0 0 0 0 0 
7 0 0 300 200 0 0 201.3 201.3 201.3 0 0 0 0 0 0 0 0 0 
8 0 0 300 161.3 0 0 261.3 261.3 261.3 0 0 25 0 0 25 25 0 0 
9 25 0 291.3 166.3 0 0 291.3 291.3 291.3 0 25 25 0 0 25 25 25 0 

10 25 0 300 200 0 0 300 300 100 0 25 25 0 0 25 25 25 0 
11 25 0 300 200 0 0 300 300 200 0 25 25 0 0 25 25 25 0 
12 25 0 300 200 0 0 300 300 100 0 25 25 0 0 25 25 25 0 
13 25 0 276.3 151.3 0 0 276.3 276.3 276.3 0 25 25 0 0 25 25 25 0 
14 25 0 271.3 171.3 0 0 246.3 246.3 246.3 0 25 25 0 0 25 25 25 0 
15 25 0 300 200 0 0 300 300 100 0 25 25 0 0 25 25 25 0 
16 25 0 300 200 0 0 300 300 100 0 25 25 0 0 25 25 25 0 
17 25 0 300 200 0 0 300 300 100 0 25 25 0 0 25 25 25 0 
18 25 0 300 200 0 0 300 300 195 0 25 25 0 0 25 25 25 0 
19 25 0 300 200 0 0 300 300 115 0 25 25 0 0 25 25 25 0 
20 25 0 300 200 0 0 300 300 175 0 25 25 0 0 25 25 25 0 
21 25 0 300 200 0 0 300 300 220 0 25 25 0 0 25 25 25 0 
22 25 0 300 200 0 0 300 300 100 0 25 25 0 0 25 25 25 0 
23 25 0 300 200 8 0 300 300 104 8 25 25 0 0 25 25 25 0 
24 25 10 300 0 0 20 300 228 100 0 25 25 8 25 0 0 25 25 

Hour 
Power Generations of Units(MW) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
1 455 455 0 0 25 0 0 0 0 0 290 150 0 0 25 0 0 0 0 0 
2 455 455 0 0 25 0 0 0 0 0 390 150 0 0 25 0 0 0 0 0 
3 455 345 0 0 25 0 0 0 0 0 455 395 0 0 25 0 0 0 0 0 
4 455 455 0 0 40 0 0 0 0 0 455 455 0 0 25 0 0 0 0 0 
5 455 455 130 0 55 0 0 0 0 0 455 455 0 0 25 0 0 0 0 0 
6 455 400 130 130 25 0 0 0 0 0 455 450 130 0 25 0 0 0 0 0 
7 455 455 130 130 162 0 0 0 0 0 455 228 130 130 25 0 0 0 0 0 
8 455 455 130 130 35 0 0 0 0 0 455 455 130 130 25 0 0 0 0 0 
9 378 455 130 130 162 80 25 0 0 0 455 455 130 130 25 20 25 0 0 0 

10 453 455 130 130 162 80 85 55 0 0 455 455 130 130 25 20 25 10 0 0 
11 455 455 130 130 162 80 85 55 10 0 455 455 130 130 103 20 25 10 10 0 
12 455 455 130 130 162 80 85 55 55 55 455 455 130 130 93 20 25 10 10 10 
13 453 455 130 130 162 80 85 55 0 0 455 455 130 130 25 20 25 10 0 0 
14 378 455 130 130 162 80 25 0 0 0 455 455 130 130 25 20 25 0 0 0 
15 455 455 130 130 35 0 0 0 0 0 455 455 130 130 25 0 0 0 0 0 
16 455 455 130 130 0 0 0 0 0 0 455 215 130 130 0 0 0 0 0 0 
17 455 455 130 130 0 0 0 0 0 0 455 150 130 95 0 0 0 0 0 0 
18 455 455 130 130 0 80 0 0 0 0 455 215 130 130 0 20 0 0 0 0 
19 450 455 130 130 25 20 0 0 0 0 455 455 130 130 0 20 0 0 0 0 
20 401 455 130 130 162 80 25 10 10 10 455 455 130 130 162 20 25 10 0 0 
21 393 455 130 130 162 80 25 10 0 0 455 455 130 130 0 20 25 0 0 0 
22 265 455 130 130 0 0 25 0 0 0 455 455 130 130 0 0 25 0 0 0 
23 455 455 130 0 0 0 0 0 0 0 455 175 130 0 0 0 0 0 0 0 
24 455 455 0 0 0 0 0 0 0 0 455 235 0 0 0 0 0 0 0 0 



 

 
 

 
The results of improved SFLA for 10, 20 units 
systems   are compared with the results of 
LRGA [7], ICGA [10] & original SFLA [12] 
and are listed in Table 16. It is obvious that 
SFLA has satisfactory results in comparison 
with other method. Fig. 7 to 10 shows the 
convergence rate of improved SFLA for the 
various systems considered in this work.  

Table 5 
Comparison of optimal cost of SFLA with improved 

SFLA 
 

Sl.No System 
No.of 

generating 
Units 

Optimal 
Cost($) 
SFLA 

Optimal 
Cost($) 

Improved 
SFLA 

1 IEEE14BUS 5 11171 10910 
2 IEEE 30BUS 6 12768 12491 
3 IEEE56BUS 7 51645 48875 
4 IEEE 118BUS 54 1665800 1656700 
5 10 UNIT  10 564769 564690 
6 20 UNIT 20 1135800 1135800 

 
It is better when compared to the 15 to 16 
shuffling iterations taken by ordinary SFLA [12] 
to reach almost the same optimal solution. From 
Table (15) it can be concluded that the 
convergence rate of SFLA is improved by the 
introduction of cognition component.  

 
Table 6 

Comparison of shuffling iterations of SFLA with   
improved SFLA 

 

 
 

 

Table: 7 Comparison of operation cost of various 
methods 

 

No. of 
Units 

Operational Cost ($) 
LRGA 

[7] 
IGCA 
[10] 

SFLA 
[12] 

Improved 
SFLA 

10 565825 566404 564769  564690 
20 1130660 1124892 1135800 1135800 

 
6. Conclusion 
  

The solution of UCP actually means, 
physically feasible and financially viable 
scheduling of generators. The existing methods 
for solving UCP have their inherent limitations 
of relaxation and computational efficiency. In 
this paper, a new evolutionary algorithm known 
as improved SFLA for UC problem was 
presented. The integer coding is used to code the 
parameters of UCP. This type of coding directly 
satisfies the min up/down time constraints, and 
no need for any penalty function for this 
constraint. 

 The performance of the proposed 
algorithm is tested for a one day scheduling for 
various test systems with 5 to 54 units. The 
results of 10 and 20 unit systems are compared 
with  LR & ICGA and original SFLA method. 
The results of other systems are compared with 
original SFLA method. The simulation results 
shows that the production cost of SFLA is less 
than the other methods such as LR & ICGA. 
Also the test result shows that the introduction 
of cognition component improves the 
convergence rate of SFLA.  
 Our future work is directed towards the 
inclusion of emission and valve point loading 
effect along with the existing operational 
constraints. 
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APPENDIX: 1   
LOAD DATA FOR ALL TEST SYSTEMS 

 
 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 
Load 
(MW) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 
Load 
(MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800 

 
 

APPENDIX:2 
10 UNIT SYSTEM DATA 

	
  
	
  
 

 Pmax Pmin A B C MUi MDi Hcost Ccost Chour IniState 
Unit1 455 150 0.00048 16.19 1000 8 8 4500 9000 5 8 
Unit2 455 150 0.00031 17.26 970 8 8 5000 10000 5 8 
Unit3 130 20 0.002 16.60 700 5 5 550 1100 4 -5 
Unit4 130 20 0.00211 16.5 680 5 5 560 1120 4 -5 
Unit5 162 25 0.00398 19.70 450 6 6 900 1800 4 -6 
Unit6 80 20 0.00712 22.26 370 3 3 170 340 2 -3 
Unit7 85 25 0.00079 27.74 480 3 3 260 520 2 -3 
Unit8 55 10 0.00413 25.92 660 1 1 30 60 0 -1 
Unit9 55 10 0.00222 27.27 665 1 1 30 60 0 -1 

Unit10 55 10 0.00173 27.79 670 1 1 30 60 0 -1 


