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Abstract: This work presents a planning approach
of distributed generating units for unbalanced radial
distribution systems using a hybrid differential
evolution algorithm (DE) and Cuckoo search
algorithm (CSA) so as to determine the optimal
distributed generation (DG) location(s) and power
allocation. Four objective functions are formulated in
the planning problem. They are the minimization of:
(i) total real power loss, (ii) maximum average
voltage deviation, (iii) total neutral current, and (iv)
total system cost. These objectives are optimized
under the constraints of minimum and maximum
voltage limits for each bus voltage and thermal limit
of each line. A modified three phase forward-
backward sweep based load flow algorithm is
employed as a supplementary tool for the evaluation
of these objective functions. The simulation results
obtained with the 19-bus and 25-bus unbalanced
radial distribution systems show that significant
improvement in power loss, maximum average
voltage deviation, and total system cost can be
achieved with simultaneous optimization for DG
location(s) and power generation. The performance
of hybrid DE-CSA is found to be better and consistent
as compared to some other meta-heuristic algorithms
studied here.
Key words: Unbalanced radial distribution systems, three
phase load flow, distributed generation, differential
evolution algorithm.

1. Introduction
Nowadays distributed generation (DG) are gaining
popularity over traditional power generating units due
to several advantages in view of economy and
operation [1]. The economic benefits are deferral in
cost of investment for building new lines, reduction
in wholesale price by supplying power to the grid.

The operational benefits are the power loss reduction,
the voltage profile improvement, the peak load
shaving, improvement in system stability and
reliability [1, 2] . However, improper DG allocation
may lead to increase in system loss, cost and
violation of various technical constraints. But,
optimal allocation and proper sizing of DGs can
reduce network power loss, investment cost, and
improvement in power quality and voltage profile of
the system. Generally distributed generation planning
is complex mathematical problem which requires
simultaneous optimization of various objective
functions such as minimization of the fuel cost, the
power loss and bus voltage deviation, etc.

Various optimization techniques have been used
[3–13] in the literature to solve the distributed
generation planning problem. They are based on
analytical approach [7, 8], voltage index method [4],
numerical approach [12], restoration approach [11]
and meta-heuristic optimization [5, 6, 9, 10, 13, 15,
17]. Meta-heuristic-based are genetic algorithm (GA)
[5, 10, 13, 17], differential algorithm (DE) [6], hybrid
shuffled frog leap algorithm and DE [9], particle
swarm optimization (PSO) and ant colony
optimization (ACO) [16], adaptive genetic algorithm
(AGA) [17]. Modified NSGA [20], and gravitational
search algorithm [21]. The objectives considered in
the literature for the distributed generation planning
are the minimization of system upgrade cost, cost of
the energy loss and the interruption cost [5], the
maximization of profit of a distribution Company [6],
the minimization of power loss [7], maximizing
system value [8], minimization of total power loss,
cost of electrical energy and total pollutant emission
[9 ,20], minimization of line loss, voltage deviation
and voltage stability margin [10], minimization of
cost of energy not supplied and cost of energy loss
[11], loss minimization and DG capacity
maximization [12], minimization of cost and



over/under voltage of buses [13], reactive power
minimization [15] and cost of power generation by
DGs and distribution companies [16], minimization
of total installation and operational cost, and
minimization of risk factor [18], power loss and
maximum voltage deviation minimization[17], and
power loss minimization [18,21], and voltage profile
improvement [21].

In most of the DG planning approaches, the
distribution systems are considered to be balanced [1-
13], [15–24]. The optimal allocation of DG
considering load and generation uncertainties for
balanced distribution systems is presented in [17].
However, no work is reported in the literature for
planning of DG in unbalanced radial distribution
systems considering load and generation uncertainties.

The objective functions are the total power loss,
maximum average voltage deviation, total neutral
current and total system cost. A hybrid Differential
evolution (DE) and Cuckoo search algorithm (CSA)
is adopted as the solution strategy for minimizing
these objective functions to obtain optimal DG
locations and power generation. For the evaluation of
each objective, a forward-backward load flow
algorithm is developed. The proposed approach is
demonstrated on the 19-bus and 25-bus unbalanced
radial distribution systems. Multiple simulation runs
are taken, and the results are compared with
Differential evolution algorithm (DE) [22], and
cuckoo search algorithm (CSA) [23]. The
performance of hybrid DE-CSA is found to be better
among them. The contributions of this works are
summarized as:

 Application of a hybrid Differential evolution
and Cuckoo Search based planning algorithm
for DG power allocation and sizing
considering uncertainty of load and generation; Comprehensive performance comparison of
Hybrid DE-CSA with DE and CSA.

This paper is organized as follows: Fuzzy-based
modelling of load and generation uncertainties is
described in section 2. Problem Formulation is
presented in section 3. In Section 4, the
implementation of proposed planning approach using
Hybrid DE-CSA is described. The simulation results
are presented in section 5. Section 6 concludes the
paper.

2. Fuzzy based Modelling of Load
and Generation Uncertainties

In this work, the variation in load demand and
generation power are expressed by triangular fuzzy
numbers [18]. The load variation in distribution
network is random in nature and also the power
generated by DG is considered to be uncertain due to
variation in wind speed and solar radiation. This
variation affects the bus voltage, current flowing
through branches and cost of power production which
may lead to violation of various technical and
economic constraints of a system. In this approach,
the variation in load and power generation are
modelled using fuzzy quantities [18].

The uncertainties associated with the load demand
and the DG power generation are represented as
fuzzy numbers [18] as shown in Fig. 1.

The load demand is described as a fuzzy number
min max( , , )d d d d as shown in Fig.1 (a), dmin is the

lowest value of load demand, dmax is the highest value
of load demand, and d corresponds to the load
demand at which membership value attains value 1
(i.e. load demand with highest possibility of
existence). Similarly, the power generated by DG is a
fuzzy number

~
min max( , , )PDG PDG PDG PDG as

represented in Fig. 1(b), where PDGmin represents
minimum DG power generation, PDGmax maximum
DG power generation, and PDG shows highest
possibility of existence for power generated by DG.
The objective function is also a fuzzy number as it
contains the load demand and the DG power
generation as variables.

2.1 Defuzzification approach
In order to compare and rank among several solutions
with fuzzy objective functions, a total distance
criterion (TDC) based defuzzification technique [24]
is used, as they provide better representation of a
fuzzy set in comparison to other techniques such as
mean of maxima and center of gravity. TDC finds out
the average of the sum of areas under the left and

1 1

(b)(a)
dmin d dmax

µd

PDGmaxPDGPDGmin

µPDG

Fig. 1. Fuzzy representation of load demand (a) and
power generated by DG (b)



right sides of the fuzzy membership function for a
particular α-level. Mathematically for a triangular
fuzzy number, the removal {RM (

~fn )} of a fuzzy
objective function for a α-cut obtained as:
{RM(

~fn )} = (fnα1+2fn2+fnα2)/4 (1)
Where, [fnα1 , fnα2] is the defuzzified value for the
objective function

~fn obtained from α-cut [17], and
fn2 is the point at which membership value attains
unity.

3. Problem Formulation
The objective of this planning problem is the

minimization of various objective functions subject to
some technical constraints. These objective functions
are described below.

(i) Total Power Loss reduction index (TPLRI): The
total power loss of a system is expressed as follows

_~~
_~

with DG

without DG
TPLTPLRI
TPL

 (2)
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Where, TPL is the total power loss in kW and p
jI and

are the current and resistance of phase p of the jth
feeder segment, respectively.

(ii) Maximum average voltage deviation index
(MAVDI): The maximum average voltage deviation
index is formulated according to Eq. (4)
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(iii) Total neutral current reduction index: The total
neutral current reduction index is defined as below.
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with DG
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TNC
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TNCRI  (5)

1
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p a i
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 

 (6)

Where piI represent branch current of phase p of the
ith branch.

(iv) Total cost reduction index: The total cost
reduction index is defined as below.

_~~
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with DG

without DG
TCTCRI
TC

 (7)
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
  (8)

sub sub subC P k  (9)
i i i iC a b P   (10)

Captial cost ($/kW)  
 ( ) 365 24

Rated capacity Gra Life time year CF
     (11)

&  ($ / kWh)+  ($ / kWh)b O M cost fuelcost (12)
Where, TC [19], subC , subP , and subk represents

total system cost in $/h , power supplied by substation in
kW, and purchase price of electric energy from substation
in $/kWh respectively; the price of DG power generation
of unit i , is denoted as Ci ($/h) [19]; Gr denotes the annual
rate of benefit and CR represents capacity factor of DG
units.The weighted sum of all objectives functions are
defined as:

~ ~

~ ~
1RM( ) 2RM( )

3RM( ) 4RM ( )
fit k TPLRI k MAVDI
k TNCRI k TCRI

  


(13)
Where, k1+k2+k3+k4=1.0 (14)
In which, kw denotes the weighting factor and k1, k2,k3, and k4 are considered to be 0.25.
The fitness function (FT) for DE is assigned as

follows:
Maximize 1/ (1 )FT fit  (15)
This fitness function is maximized under the

following constraints:
i. Voltage constraint: Voltage at each bus must

remain within the permissible range.
maxRM( )min abcs s sV V V  (16)

ii. Thermal constraint: The current flowing through
each branch must be within the maximum current-
carrying capacity of the conductor.

maxRM( )abcj jI I (17)
ii. DG power generation constraint:

~
min maxRM( )iPDG PDG PDG  (18)

4. Implementation of hybrid DE-CSA algorithm
for DG allocation



The proposed DG allocation technique with DE-
CSA utilizes a fuzzy three-phase load flow algorithm
as a subroutine to obtain bus voltage magnitudes and
power loss of a system. DE-CSA algorithm is used to
update the chromosome representing decision
variables such as DG location and rating. The load
flow algorithm including DG is explained in Section
4.1 and application of Hybrid DE-CSA is described
in Section 4.2.

4.1 Modified three phase forward-backward
sweep load flow algorithm incorporating DG

The proposed algorithm [25] uses three matrices A,
B and C to find power flow solutions. The
downstream buses connected to a particular bus are
determined using matrix A. The end buses are
identified with the help of matrix B and matrix C is
developed to obtain the branch currents. This load
flow algorithm basically consists of two steps. In the
first step, the backward sweep is executed to find out
the branch currents. This is explained as follows:

The load currents in unbalanced radial distribution
systems are calculated using the following equations:

*
a aa j jj aj

P iQIL V
      (19)

*
b bb j jj bj

P iQIL V
      (20)

*
c cc j jj cj

P iQIL V
      (21)

Where,
ajIL ,

*ajV ,
ajP ,

ajQ are the load current
and voltage conjugate (in phasor form), active and
reactive power demand at bus j for phase a

Then the branch currents are computed as follows:
( ) ( )a a aj

j T
I jk I k IL


  (22)

( ) ( )b b bj
j T

I jk I k IL


  (23)
( ) ( )c c cj

j T
I jk I k IL


  (24)

Where ( )aI jk denotes the current flowing (in
phasor form) in branch jk for phase- a and the set T
consists of all buses connected to jkth branch.

Then, the forward sweep is executed to obtain the
bus voltages. This step is performed to obtain the
voltage at each bus of an unbalanced distribution
system as follows:

a a aaa ab ac jkk j jk jk jkb b bba bb bc jkk j jk ij jk
ca cb ccc c cjk jk jk jkk j

V V IZ Z Z
V V Z Z Z I

Z Z ZV V I

                                      (25)
Where, bus j and k denote the sending end bus and

receiving end bus, respectively for branch jk.
4.1.1 Incorporation of DG model in Fuzzy

distribution load flow
The load flow algorithm [25] is modified for

considering fuzzy load and generation model by
taking β-cuts [18] of load flow. To incorporate the
DG model, the active and reactive power demand at
the bus at which a DG unit is placed, say, at bus i,
Eqs. (19)-(21) are modified by:

jp jp

jp jp

DG base DGD D jp
DG base DGD D jp

P P P
Q Q Q

 
  (26)

Where, DG
ipDP and DG

ipDQ are the active and reactive
power demand for pth phase of jth bus with a DG unit
and jp

baseDP and jp
baseDQ are the active and reactive power

demand for pth phase of jth bus of the base-case
network; DGjpP is the active power generated by the
DG unit placed at pth phase of jth bus.

4.2 Proposed Planning Approach Using DE-CSA
DE-CSA is used as the solution methodology for

planning problem of unbalanced radial distribution
systems. A brief overview on DE and CSA is
provided in the following subsection. The
pseudocode of the planning approach using DE-CSA
is provided in Section 4.5.

4.2.1 Differential Evolution (DE) Algorithm: An
Overview

DE is a population-based multi-point search
algorithm [22]. There are several variants of DE
algorithm [22]. The different variants of DE are
classified using the notation: DE/α/β/δ; where α
indicates the method for selecting the parent
chromosome, β indicates the number of difference
vectors used to perturb the base chromosome, and δ
indicates the crossover mechanism used to create the
offspring population. In this work, DE/rand/1/bin
variant is used. The acronym bin indicates crossover
operation is controlled by a series of binomial
experiments. The search starts with a randomly
chosen initial population of n-dimensional
chromosomes which are iteratively evolved using
three operations, i.e., mutation, crossover, and



selection. The ith population member in iteration t is
given by:

1 2( ) ( ( ), ( ), ..., ( )) i i i inx t x t x t x t (27)
In each iteration, also called generation, a mutant
vector is created, which is a vector difference of two
randomly selected chromosomes. Then, crossover
and selection operations are performed to generate
trial vectors. The better chromosomes are selected by
using selection operation. These processes are briefly
discussed below.

4.2.2 Mutation: For each target individual ( )ix t , a
mutant vector ( )ih t is generated according to

1 2 3( 1) ( ) ( ( ) ( ))   1 2 3i r r rh t x t F x t x t r r r i       (28)
Where, indices r1, r2, r3  [1, ηpop] are generated

randomly, [0, 2]F  is a scale factor which controls
the mutation size, and ηpop denotes population size.

4.2.3 Crossover: The trial vector is generated as
follows

1 2( ) ( ( ), ( ), ..., ( ))i i i inv t v t v t v t (29)
( 1)  [0,1]   ( 1) ( )  [0,1]    

 

ij ij rand
ij ij ij rand

h t rand CR or j jv t x t rand CR or j j
       (30)

Where, CR is a crossover constant in the range [0,
1] specified by user, and jrand is a randomly chosen
integer in the range [1, ηpop] to ensure that the trial
vector vi gets at least one element from the mutant
vector, randij [0, 1] is a uniformly distributed random
number for each jth component of the ith parameter
vector.

4.2.4 Selection: The selection operation generates
better offspring (vectors) from the target (parent)
individual and the trial (child) vector and is done as
follows:

( 1)   ( ( 1)) ( ( ))( 1) ( )     ( ( 1)) ( ( ))   
i i ii i i i
v t FT v t FT x tx t x t FT v t FT x t

      
(31)

Where FT (.) is the fitness function to be
maximized.

4.2.5. Cuckoo Search Algorithm (CSA): An
Overview

Cuckoo search algorithm (CSA) was developed
by Xin-She Yang and Suash Deb by observing the
intelligent egg laying strategy of cuckoos. They lay
their eggs in a randomly chosen host nest for their
survival. If the host nest identifies cuckoo eggs, it
will either throw away their eggs or build a new nest
somewhere else. The nest in the CSA algorithm is
same as the population, which is used in particle
swarm optimization. Each egg in the nest represents
the possible solution or decision variable for the

optimization problem. The CSA follows three rules
[23] as: Each cuckoo lays one egg at a time, and

abandons in a random nest; The better quality eggs (good solutions)
moves to next generations; A host bird can discover an alien egg with
a probability, pa = [0, 1] and builds a new
nest at a new location or completely
abandons its own nest or throw away the
eggs.

CSA generates random host nest using levy flight for
new solution 1tix  as:

1 Levy( )t ti ix x      (32)
Where α>0, denotes the step size,

1

1
2

(1 ) sin( )2( )
1( ) 22

Levy



 

 


  
  

(33)
4.2.6 Encoding Strategy
A chromosome for DE-CSA representing a

candidate solution in this planning problem consists
of three decision variables and is represented as a
vector L as follows:

L= [NDG, β, PDG] (34)
β = [β 1, β 2,.., βM] (35)

PDG= [PDG1, PDG2, …, PDGN] (36)
Where β denotes the vector of DG locations;

PDG vector represents the active power generated by
DGs, and NDG represents the number of DGs.

4.2.7 Pseudo Code of the Proposed Approach
Begin
// ηpop = Size of population
//max_iter = Maximum number of iterations
Generate initial population for DE randomly using

proposed encoding scheme and initialize the DE and
CSA parameters such as F, CR, and  respectively.

Decode the initial population and obtain the DG
location and size for each chromosome or target
vectors

Iteration=1
While Iteration <= max_iter

For i=1,…, ηpopSelect r1, r2, r3 from the population such that
1 2 3r r r 

Obtain mutant vectors using equations (28)



Generate a random number r between 0-1
If r < CR

Keep the Trial vector V generated by
DE using Eqs. (29)- (30)

Else
Generate Trial vector V by CSA using
Eqs. (32)- (33)

End If
End For

Determine the fuzzified objective function with
the help of fuzzy distribution load flow so as to rank
them using removal values, assign fitness to each
chromosome

Calculate FT for target vectors and define as fit1
Calculate FT for trial vectors and define as fit2
For i=1,…, ηpopIf fit2>fit1

Target vector=trial vector
Else

Target vector=target vector
End If

End for
Find out the fittest chromosome form the target

vectors for each iteration
Iteration=iteration+1
End while
Obtain the best chromosome from the set of fittest

chromosome
End
Fig. 3. Pseudo code of the proposed approach

using DE-CSA
5. Simulation Results and discussions

The computer simulation study for the proposed
planning approach is done in MATLAB R2012
environment using two test systems, i.e., 19-bus and
25-bus unbalanced radial distribution systems. The
load and line data of the 25-bus system and 19-bus
system are taken from [14]. The base voltage and
base MVA for the 19-bus system are taken as 11 kV
and 1 MVA, respectively. For the 25-bus system,
these are 4.16 kV and 30 MVA, respectively. The
total active and reactive power demand for the 19-bus
system are 365.94 kW and 177.27 kVAR,
respectively. For 25-bus system, these demands are
3240 kW and 2393 kVAR, respectively. The power
loss, complex power unbalance, neutral current,
ZSUF, and NSUF for the base case network of the
19- and 25-bus systems are given in appendix Table 1.
The DE, CSA, and hybrid DE-CSA parameters are
optimized by taking repetitive simulation runs, and
the optimal parameters are shown in Table 2. The DG
penetration level i.e. the ratio of total DG active

powers to total active power demand is considered to
be 0.4 and 0.5 for 19-bus and 25 bus system
respectively. Two hybrid DG systems are considered.
The cost parameters of DG such as Gr, CF, and other
parameters are taken from [16]. Each hybrid system
consists of two photovoltaic (PV) and one wind
turbine (WT) based DG placed at phases a, b, and c
of a bus in a three-phase unbalanced system. The
maximum power generated by DGs are considered to
be 30 kW and 400kW for 19-bus and 25-bus system.
The DG units are assumed to be operated at unity
power factor. Four different planning optimization
cases are used. They are: Case A: Deterministic load and generation Case B: Fuzzy load and deterministic

generation Case C: Deterministic load and fuzzy
generation Case D: Fuzzy load and fuzzy generation

Peak load and maximum generation are used for
deterministic cases. A triangular fuzzy number is
utilized to model the uncertainty of load and
generation. The scenario considered for load and
generation is as follows.
Load demand

~L = (0.5, 1, 1.3) p.u. of peak load
demand and DG generation as (0.3, 1, 1.5)
All the objective functions are aggregated with equal
weights so as to get simultaneous optimization of all
of them.

Table 1: Base case values for the 19- and 25-bus systems without DGunits
Parameters DE CSA [21] DE-CSA[22]

ηpop 100 100 100
ITmax 150 150 150

Individual parameters CR=0.8  (constant)=1 CR =0.8, 1
F=1.0 --- F=1.0

Table 2: Optimal parameters used in DE, CSA, and DE-CSA
Objective 19-bus system 25-bus system
PL (kW) 13.470 150.12

TSu(MVA) 0.0218 0.0927
AVd (%) 3.3083 4.7866

ZSUF (%) 0.0715 0.1835

A comparison of fitness value among hybrid DE-
CSA, DE, and CSA for 19-bus system is shown in
Fig. 4. It is observed that DE-CSA is converging at a
faster rate than DE and CSA. From Fig. 8. , it can be
viewed that DE-CSA converges at iteration number
37, DE reaches convergence at 95 iterations and CSA
at 127 iterations. This validates that performance of



DE-CSA in comparison to other meta-heuristic
techniques such as DE and CSA. Hybridization of
DE with CSA provides faster convergence than DE
and CSA.

A. Simulation results multiple Runs
The optimal locations and power generations for

19-bus and 25-bus systems using hybrid DE-CSA for
scenario 1 for 25 runs shown in Fig. 5 and 6
respectively. It can be seen from Fig. 5 that locations
9 and 10 are found to be best locations for hybrid DG
systems1 because the median value of DG power
generation is found to be positive for 25-bus system.
Similarly, locations 13 and 14 are found to be
suitable location for hybrid DG system 2 as viewed
from Fig. 6. for Case A planning. Same locations are
obtained for Case B, C, and D planning for 25-bus
system. From Fig. 7 and 8 for hybrid DG systems1,
location 10 and 13 are found to be best location in
19-bus system and for hybrid DG systems 2 location
14 is the most effective location for DG integration
for 19-bus system for case D planning. Same
locations are obtained for Case A, B, and C planning
for 19-bus system.

Fig. 4. Comparison of fitness value among DE-CSA, DE and CSAfor a 19-bus system considering Case D for a sample run
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Fig. 5. Boxplot of the location and DG power
generation for the 25-bus system with hybrid DE-CSAfor scenario 1 for hybrid DG systems 1 for case A
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B. Comparison among different objective function
solutions for planning cases (A-D) with using hybrid
DE-CSA
Table 3 and 4 shows the Comparison among different
objective function solutions for planning cases (A-D)
with using hybrid DE-CSA for 19-bus and 25-bus
system respectively. The solutions with planning
Case B and D are found to be lower in view of power
loss, maximum average voltage deviation (p.u.), total
neutral current, and total cost of system as compared
to planning Case A and C for both 19-bus and 25-bus
system. This may be due to the decrease in load
demand at buses with Case B and Case D planning.
As the load demand reduces, the line loading also
decreases causing lower power loss, neutral current,
cost, and voltage deviation.
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Fig. 6. Boxplot of the location and DG power generation for 25 runs withhybrid DE-CSA for scenario 1 for hybrid DG systems 2 for case A
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Fig. 7. Boxplot of the location and DG power generation for 19-bussystem with hybrid DE-CSA for scenario 1 for hybrid DG systems 1 for
case D
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Fig. 8. Boxplot of the location and DG power generation for 19-bus system
with hybrid DE-CSA for scenario 1 for hybrid DG systems 2 for case D



Table 3: Comparisons among the different objective
functions solutions for different planning cases for 19-bus

(Scenario 1) using hybrid DE-CSA
Objective
function

19-bus system
Without

DG
With DG

Case A Case B Case C Case D
TPL(kW) 13.470 4.7947 4.5965 4.7895 4.1316

MAVDI(p.u.) 0.494 0.0243 0.0230 0.0240 0.0220
TNC (p.u.) 2.384 1.4512 1.4420 1.4543 1.3542

TC($/h) 21.24 17.0903 17.0812 17.6418 16.4272
Table 4: Comparisons among the different objective

functions solutions for different planning cases for 25-bus
(Scenario 1) using hybrid DE-CSA

C. Impact of load growth
In this section, the impact of load growth on 19-bus
and 25-bus system considering equal per unit loading
for planning cases (A-D) is studied. Figs. 9 and 10
depict the percentage of buses violating the voltage
limit and percentage of currents violating current
limits for 19-bus and 25-bus respectively. It is
observed that Cases B-D are able to hold 120%-140%
and 80% load growth without violating any
constraints for 19-bus system and 25-bus system
respectively. The higher percentage load growth rate
of 19-bus system may be due to reason that
individual load demand at the phases of the system is
lower as compared to 25-bus system. It is found that
fuzzy based planning approaches provide better
solutions in sustaining future load growth while
maintaining voltage and thermal constraint.

(b)
Fig. 10. Percentage of: (a) buses violating the voltage limit and(b) Branches violating thermal limit constraint due to load growth for

19-bus system.

D. Performance Comparison of DE-CSA with DE,
and CSA
The comparative results among the solutions obtained
with the DE-CSA, DE, and CSA for the planning
Case D are given in Table 4. In Table 4, the mean
(MN) and standard deviation (SD) values of system
power loss, maximum average voltage deviation,
total neutral current, and total cost of the system is
shown. The objective function values with the DE-
CSA technique are better than the values obtained
with DE and CSA. Similar pattern in results are also
obtained for planning cases A, B, and C. This
confirms the superiority of the proposed technique
for the DG planning problem.

Objective
function

25-bus system
Without

DG
With DG

Case A Case B Case C Case D
TPL(kW) 150.12 70.6714 63.2339 71.5642 62.8120

MAVDI(p.u.) 0.0689 0.0370 0.0349 0.0365 0.0345
TNC (p.u.) 0.6375 0.4820 0.4635 0.4810 0.4585

TC($/h) 189.84 161.3886 153.9511 160.6431 150.8145
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Fig. 9. Percentage of: (a) buses violating the voltage limit and (b)branches violating thermal limit constraint due to load growth
for 25-bus system.
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Table 4: Comparison of the results as obtained with DE-CSA, DE, and
CSA for Case D planning

System Solution
strategy

TPL(kW) MAVDI(p.u.
) TNC (p.u.) TC($/h)

MN SD MN SD MN SD MN SD

19-bus

DE-CSA 4.1316 0.0386 0.0220 0.0005 1.3542 0.0386 16.4272 0.0005
DE 4.331

5
0.038

6
0.022

9
0.000

6
1.38
71 0.0388 16.6221 0.0006

CSA 4.3353 0.0541 0.0230 0.0007 1.3886 0.0541 16.6309 0.0007

25-bus

DE-
CSA

62.81
20

0.400
5

0.034
5

0.000
6

0.45
85 0.0034 150.814

5 0.0006
DE 68.1358 0.4621 0.0362 0.0007 0.4768 0.0035 158.8530 0.0007

CSA 68.26
91

0.566
2

0.036
3

0.001
2

0.47
75 0.0036 158.986

3 0.0012

6. Conclusion
In this paper, a planning approach has been

implemented to determine the optimal DG location (s)
and power generation of unbalanced radial
distribution systems by optimizing the power loss, the
maximum average voltage deviation, the total neutral
current, and the total cost of the system. A forward-
backward load flow algorithm including the DG
model has been developed and used in the planning
approach. A hybrid DE-CSA based algorithm is used
as the solution methodology. The salient outcomes of
this work are: A hybrid DE-CSA optimization approach for the

DG location (s) and the DG power allocation
provides a network with reduced power loss,
better voltage profile, and lower system cost. The performance of DE-CSA algorithm is found
to be better and consistent as compared to DE
and CSA algorithm.
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