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Abstract: with the deregulation of electric power systems,
market participants are facing an important task of
bidding the energy in a pool operation. This paper
essentially aims to propose a new optimal bidding
solution methodology for both power suppliers and for
the system, with the impact of line limits and the
transmission losses. The model of the producer surplus
maximization is a bi-level maximization problem and the
model of social welfare function (SWF) with elastic
demand is a maximization problem. In this paper a novel
hybrid optimization technique based on PSO-SQP is
developed to solve the problem. In this hybrid algorithm,
Canonical PSO (CPSO) with constriction factor is used
as a global optimizer and SQP as the local optimizer.
Simulations have been carried out on a 3-bus system and
modified IEEE 30-bus system, to show the robustness and
the effectiveness of the proposed hybrid algorithm.

Index Terms - Bi-level optimization, optimal bidding
strategy, pool dispatch, particle swarm optimization,
Sequential Quadratic Programming

1. Introduction

In the recent past, many countries around the
globe have been undergoing massive changes to
introduce competition in power industry. Various
models have been proposed and tested in different
countries [1]. Two market models; power pool
model and bilateral model are widely wused
throughout the world. In the pool model, the
Independent System Operator (ISO) in the power
pool acts, effectively, like a broker for managing
energy suppliers’ bids and large customers’ offers,
to establish a market-clearing price (MCP). MCP is
the bid price of the most expensive supplier that is
needed to completely meet the demand, and is used
as the basis for the settlement of market
commitments. Regardless of the bidding prices from
suppliers, all selected bidders are paid the MCP.
This approach is adopted to encourage suppliers in a
competitive market to price energy close to their
marginal costs. In bilateral transaction bulk of
energy transactions are carried out through contracts

between suppliers and customers.

Most of the pool markets in United States are
operated by ISO, those who are responsible for
energy settlement process in the power pool. The
sealed bid auction is widely used in the pool market.
The bids are generally in the form of price and
quantity quotations and specify how much the seller
or buyer is willing to sell or buy, and at what price.
Each supplier submits a sealed bid to the pool to
compete for the supply of the forecast load that is
broadcast by the pool. Theoretically, in perfectly
competitive market, suppliers should bid at, or very
close to, their marginal production costs to
maximize returns. However, the electricity market is
not perfectly competitive, and power suppliers may
seek to benefit by bidding a price higher than
marginal production cost. Each supplier’s objective
is to maximize benefit, therefore, given its own costs
and constraints and its anticipation of rival and
market behavior, a supplier faces the problem of
how best to construct its offer (bid) price. This is
called the optimal bidding strategy problem. On the
other side, the pool operator will use a dispatch
strategy that minimizes customers’ payments given
the supply costs represented in the suppliers’ bids,
which is similar to pool operations in United
Kingdom.

In recent years, some research has been done on
building optimal bidding strategies for competitive
generators. This problem was addressed for the first
time by David [2]. He discussed a conceptual
optimal bidding model and a dynamic programming
based approach for England-Wales electricity
markets, in which each supplier is required to bid a
constant price for each block of generation. System
demand variations and unit commitment costs were
considered in the model. In [3], a brief literature
survey about strategic bidding in competitive
electricity market was presented. In general there are
two methods for developing bidding strategies in
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competitive electricity market: game and non game
based methods. In [4] & [5], the competition among
participants is modeled as a non-cooperative game
with incomplete information, and the imperfect
information of the suppliers is solved using Nash
equilibrium.

In [6], a dynamic model of strategic bidding for
the situation with three power suppliers was
proposed by utilizing the historical and current
market clearing prices. This model is heuristic in
principle, and is not directly applicable to the
general case with more than three suppliers. In [7],
the bidding behavior model of the suppliers is
developed, and how a supplier would construct his
bid as a function of his private cost and cost
distributions of other bidders are also discussed. In
[8], a model and a method for optimization-based
bidding and self-scheduling are discussed with
respect to New England market based on lagrangian
relaxation method. In [9], an optimal bidding
strategy for the power suppliers are framed as a
stochastic optimization problem and it is solved by
Monte Carlo based and optimization based methods.
An interior - point optimal power flow model was
proposed in [10] for the sensitivity based optimal
bidding strategy for the suppliers. The impact of
congestion on the profit of the suppliers and clear
problem formulation with the solution by using Nash
equilibrium is discussed by Peng [11]. In [12], the
bidding strategy problem is modeled as a two level
optimization problem. In the first level the suppliers
are maximizing their own profit and in the second
stage ISO dispatching the power subject to
minimization of total system cost. The bidding
strategy model for risk averse and risk seeker
suppliers are discussed in [13]. Recently, a global
optimization technique known as Particle Swarm
Optimization (PSO) has become a candidate for
solving the optimization problem in power system.
PSO is a stochastic search algorithm and it searches
randomly from point to point to reach the optimum.
In [14], the maximization of the producer surplus is
modeled as a bi-level optimization problem and
using PSO solves it. The rate of solution
convergence is very fast at the beginning with PSO.
Thereafter, it is very slow up to the end of
convergence. This results in large computation time.
In contrast the deterministic Sequential Quadratic
Programming (SQP) method is accurate and fast
when the variations in the control variables are small

and is very effective in correcting the moderate
constraint violations. The above fact suggests that a
hybrid method with PSO algorithm for initial
solution and SQP method for getting the final
solution be an effective and fast method. In [15], the
effect of demand elasticity on the strategic bidding
behavior of the producers is discussed. A model to
address  generation companies’ medium-term
strategic analysis based on a conjectured-price-
response market is discussed in ref [16]. The
problem of the development of optimal offering
strategies by electricity producers in day-ahead
energy auctions with step-wise energy offer format
is discussed in ref [17]. In [18], the transmission
enhancement in a competitive electricity market is
analyzed in terms of its impact on the social welfare
function.

Given this background, this paper proposes a
dispatch algorithm based on Canonical PSO
(CPSO), which is combined with SQP. In this
CPSO-SQP based hybrid algorithm CPSO used as a
base search algorithm and SQP used as a fine tuner.
This paper considers the impact of transmission line
limits and transmission line losses on the dispatch
cost of the pool.

The first part of this paper focuses on the
application of the proposed hybrid algorithm to
develop the bidding strategy for power suppliers to
maximize their profit (maximization of surplus), the
second part describe the strategy followed by ISO
for settling the market to minimize the system
operating cost (Social Welfare Function (SWF)
Maximization). The effectiveness of this hybrid
algorithm is checked with simple 3-bus system and
the modified IEEE 30-bus system and the results are
tabulated.

2. Problem formulation

In this paper two pool strategies for deregulated
power market are developed. In the first strategy the
maximization of the producer surplus is discussed
and in the second strategy the maximization of
social welfare function is discussed. The problem
formulations of both are given below,

Strategy I: Producer Surplus Maximization

It is a bi-level optimization problem. In the first
level market settlement problem is solved to find the
value of the MCP, then in the next level suppliers
are trying to increase their profit by finding the



suitable value of bidding constant. For simplicity it
is assumed that consumer side bidding is constant.

A bid consists of price offers and the amount of
load to be satisfied by the market for each hour.
Price offers specify a stack of MW levels. By
integrating a staircase price offer curve, the bidding
cost function is piecewise linear. To reduce the
number of parameters associated with a bid, the
piece-wise linear bidding cost function is
approximated by a quadratic function, then the
marginal cost curve of i producer can be expressed
as,

CmCl(Pgl) = (li t BIPgl , 1= 1......... Ilg (1)
Where, ©;and B, are the intercept ($/MWh) and
slope ($/MWh2) of the cost curve, Pgi is the power

output(MW) for the i" generator, g is the no of

suppliers.
For the i™ supplier, the strategic supply function is
formulated as,

Ci(Py) = ki + BP0 @
This can be reformulated as,
The customers benefit function B J(de) is

modeled with a linear demand curve and it
expressed as,

Bj(de): dj+ edej; j=l...n, (4)
Where, d j and © j are, respectively, the intercept

($/MWh) and slope ($/MWh2) , By is the demand

(MW) of the j® customer. 7n,, is the no of
customers.
To find the profitable value of &, for the i"

supplier, it is assumed that the bidding strategies of
other suppliers are known. With the same
assumption, the profitable value of k for all the
suppliers are found with out violating any system
constraints.

In the first level the value of MCP is calculated by
using the bidding equations submitted by the
suppliers and the demand. The objective function
and the constraint for the next level to maximize the
supplier profit is given below,

= * -
Max profit = MCP (Pgi) Cmci(Pgi) (5)

Subject to,
Energy balance constraint,
n
zg P nzd P P, (6)
= +
. i . ] L
;£ &t led_] oss
Where, PLOSS is the total system transmission
loss.
Individual generation constraint,

P. . <P.<P
gi,min -~ gi

(7)

Maximization of social welfare

gi, max
Strategy 1I:
function

In this problem both the suppliers and the
customers get the benefit from the pool, otherwise it
can be the profit to the ISO.

The objective function and the set of equality and
inequality constraints are listed below,

0 n

MAXD 8 B.(P ¢ C.(P
H j=1 =1

Subject to,
Power balance constraint,

0
% (8)
i

Individual generation constraint,

P. . < . < . .1 =
g1, min g1 g1, max

Individual demand constraint,
< < . _
de,min - PdJ - de’max N ] - 1 ....... I’ld

Line flow constraints

L.<L.
] J,max

(12)

Where, NL is the total number of lines in the given
network. L, is the MVA power flow in j* line. AC

load flow model is used to check the violations in
line limits as well as to compute the losses.

3. PSO Based Bidding Strategies
A. Overview of PSO

PSO is one of the modern heuristic algorithms
developed by Kennedy and Eberhart [20]. It has
been developed through simulation of simplified
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social models. Compared to other evolutionary
methods, the advantages of PSO are ease of
implementation and only few parameters to adjust.
Similar to other evolutionary algorithms, PSO
must also have a fitness function that takes the
agents position and assigns to it a fitness value. For
consistency, the fitness function is the same as for
other evolutionary algorithms. The position with
maximum fitness value in the entire run is called the

global best (Gbest) , each agent also keeps track of

its maximum fitness value, called its local best
(P, ), and each agent is initialized with a random

position and random velocity. The velocity V; of

the j™ agent, each of n dimensions, is accelerated
toward the global best and its own personal best.
Agent’s velocities on each dimension are

clamped to maximum allowable velocity V,,,, if the

sum of accelerations exceeds this limit. V. is an

important parameter that determines the resolution
with which regions between the present position and

the target positions are searched. If V., is too

high, agents may fly past good regions. If it is low,
agents may not explore sufficiently beyond locally
good regions. To enhance the performance of the

PSO V.. is set to the value of the dynamic range of

each control variable in the problem. After
performing sufficient experiments on various types
of test cases, it has been concluded that a better

approach is to use a “rule of thumb” to limit ¥, to

the maximum limit of the control variable of the
problem.

PSO also has a well-balanced mechanism with
flexibility to enhance and adapt to both global and
local exploration abilities. This is realized by using
an inertia weight @ and is usually calculated using
the following expression:

B iter
02 0ax ~ @rmax ~ ©min) iter (13)
max
Where @© .+ / ®© in is the initial/final weight,

iter, . is the maximum iteration count, and iter is

the current iteration number. For largest values of
inertia weight, PSO has global exploration feature
and vice versa. Even then, there is a need for a trade-
off between the quality of solution and fine-tuning

of the PSO while selecting its simulation parameters.

Experimental results indicate that it is
preferable to initialize the inertia weight to a large
value, in order to promote global exploration of the
search space, and gradually decrease it to get more
refined solutions. Thus an initial value around ‘1’
and a gradual decline towards ‘0’ is considered as a

proper choice for® . If @ .. is the maximum value
of the inertia weight, two real valued parameters,

(Dscale and miterscale U [0,1]are determined, such

that ® is linearly decreased from to

(O]
max

® ® iter . . .
max  scale’©Ver "“max  iterscale Iterations.
Then for the last itermax(l- w l-te,.m,e) iterations, it

has a constant value, equal to® ., ... Proper

fine-tuning of the parameter may results in faster
convergence and alleviation of local minima.

This paper deals with maximization with
using constriction model [21] to find the velocity of
the particles, which is much suitable for
maximization problems. The equation for velocity of
the particle by wusing this is give below,
V.= x[oa*vj(t -+ C1 *randl(XL,best - Xj- 1) +

J
C *randz(X X )] (14)

2 best’" j-1

Where, Xis the variable of the

objective function f(X)

control

X , is the constriction factor and it is derived
analytically through the formula

2w
SR EE

¢ =C,+C, Andw=1

(15)

The CPSO model is used for this problem, where the
value ofcl - CZ'
The design of the CPSO constriction factor

variant was tuned in a similar manner as the inertia
weight variant.

B. Producer surplus maximization using PSO

The steps involved in
maximization is as follows,

producer  surplus



1) Generation of Initial Conditions: The initial
conditions of all the ‘M’ agents (m = 1,2,3.....M)
have to be generated randomly within the limits. For
this problem it is assumed that the bidding of the
other suppliers is known, and then random numbers
has to be generated for the bidding constant 'k' for

the ith supplier. Find the value ofpgi by using the

following equation,

Poi = (MCP-k.B.) fk; oy (16)
Check for violations in individual generator power limits
and the energy balance equation. Set the iteration count t
=1.

2) Evaluation of Agents: Each agent is evaluated
using the fitness function of the problem to
maximize the bidding constant 'k' of the supplier's’
. The real power limit of the generator is constrained
by adding them as the exact penalty terms to the
objective function to form a generalized fitness

function Fm , and is given below,
ng
F = *p - - 17
n=MCP*P Cai(Pg,)+i§1p1(Pgi Py timit) (17)

Where [l is the penalty parameter, and

HP. _ifP <P .
gi, min gl gi, min
P...:HP. AP . > P . (18)
gi, limitt 0 g1, max g1 g1, max
0P ., otherwise
08t
Search for the best fitness function value Fi,bm

among the M agents. Set the agent associated with
F, 1 as the global best (G,,,) of all the agents.

The best fitness value of each agent up to the current
iteration is set to that if the local best of that agent

(PL,best) .

3) Modification of Each Searching Point: Using the
global best and the local best of each agent up to the
current iteration, the searching point of each agent
has to be modified according to the following
expression:

.2 v.t K. (t-

ko= vtk (- 1) (19)
Where,

Vi = X[O‘)*Vi(t_ 1)+ Cl *randl(kPL,best - kt‘ 1)+
C2 "‘rand2 (kG,best -kt _ 1)] (20)

where, rand and rand, are random numbers

between 0 and 1, C, and C , are positive constants
called as the cognitive and social parameters
(acceleration parameters) respectively. Similar to
inertia weight, this factor also controls the
exploration of the PSO. This acceleration factors are

pull the solution towards P,,, and G,,, positions.

After fixing the value of C, and C,, find the value of
constriction factor [X ], select the Proper values of

W max w scale and W iterscale *
4) Modification of the Global and the Local Bests: The
value of P Lbest and G,.,, values are updated for each

iteration by evaluating the fitness function of current
iteration to find the current best value and compare it
with all the previous iterations respectively.

5) Termination Criteria: Repeat from step 2 until the
tolerance value is reached or maximum value of
iteration is reached

C. Maximization of social welfare function using
PSO

1) Generation of Initial Conditions: For this
problem the ‘M’ agents are generated randomly for
both generation (P,) and demand (Pg;) with in the
limits. The size of matrix for generators and

demands are [MX 1 g] and [mxn d] respectively.

Run the AC load flow model to find the losses of the
system and this loss is equally allocated to all the
participants of the pool (both generators and loads)
by using pro-rata method. Set the iteration count
iteration count t=1.

2) Evaluation of Each Agent: Each agent is
evaluated using the fitness function of the problem
to maximize the social welfare function. The real
power limit of the generator and the real power limit
of load is constrained by adding them as the exact
penalty terms to the objective function to form a

generalized fitness function F , and is given below,

n n n
"4 s g N

Fn= 2 Bi®g) = 3 C® D+ T Vi~V fimid)
j=1 i=1 i=1
NL

o 2 . (LF = LE jimit) (21)

Where [l |, [ , is the penalty parameter, and NL is the
total no of transmission lines,



DV rninif V. <V min
O'i i i

_ D max: max
Vitimit - Y  ifVi>V; (22)
DVi ,otherwise
0
HLF,™aXif LF, > LF,™MaX
LE Jimit = (23)

ELFi ,otherwise
Search for the best value of all the fitness function
values F) ., fromF, k= 12....M Follow the
same procedure similar to strategy 1 to find the
value of (G,,,,) and (P, ).

3) Modification of Each Searching Point: The
searching point of each agent has to be modified
according to the following expression:

Pgi(O= vy * Py (t-1) (24)
P0= Vit Pyt D (25)
where,
vz glo*v, (- )¢ C Frand, -(PgiL,best “P_(t-1)"
€ "randy (P pest ~Pgi (1) (26)
i X[co*vj(t- 1)+ Cl*randl-(deL,best - de(t-1)+
€y Frand) (P pest =Pt 27)

where, v;and V; gives the velocities for generators

P, and loads P, respectively.
4) Modification of the Global and the Local Bests: The
value of PL,,,est and Gbest values are updated similar

to the strategy 1.

5) Termination Criteria: Repeat from step 2 until the
tolerance value is reached or maximum value of
iteration is reached.

4. Sequential Quadratic Programming

The SQP method seems to be the best nonlinear
programming method for constrained optimization
[22]. It is the extension of quadratic programming, it
is the non-iterative method, but SQP is an iterative
method most suited for constrained non-linear
problems. It outperforms every other nonlinear
programming method in terms of efficiency,
accuracy, and percentage of successful solutions,
over a large number of test problems. The method
closely resembles Newton’s method for constrained
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optimization just as is done for unconstrained
optimization. At each iteration approximation is
made of the Hessian of the Lagrangian function
using a Broyden—Fletcher—Goldfarb—Shanno
(BFGS) quasi-Newton updating method. This is then
used to generate a quadratic programming sub
problem whose solution is used to form a search
direction for a line search procedure. For the
minimization problems, the Jacobean and Hessian is
positive definite (all the eigen values having positive
real parts). Since our objective function is to be
maximized, it is needed to change the search
direction in such a way that the Hessian matrix is
negative definite (all the Eigen values having
negative real parts). In this paper, SQP is used as a
local optimizer to fine-tune the better region
explored by the PSO algorithm in its run. Using the
MATLAB optimization toolbox simulates the SQP
subroutine.

5. Simulation Results
A. Optimal Selection of CPSO Parameters
Selecting the optimal range of inertia weigh® and

acceleration factors Cjand C, considerably affects

the performance of the PSO algorithm. Therefore, to
fix an optimal range of inertia weight, to solve the
two proposed strategies, experiments were
conducted by varying the value agent size, cognitive

parameter (C), social parameter(C,), starting

value of the inertia weight(® j5x), final value

Jof @ in percentage of @ . @ jerscae

C scale

percentage of iterations, for which @, is reduced

and maximum value of step size (Vax ) -

The inertia weight varied from 2.0 to 0.1, in steps
of 0.1, the agent’s size is varied from 10 to 1000 in
steps of 10, and the maximum number of iteration is
varied from 10 to 250 in steps of 10. Different
possibilities of trial runs were conducted to
optimally estimate all the parameters for the
proposed CPSO method.

To ensure reliability in producing quality solutions
by the proposed method, the relative frequency of
convergence toward a quality solution is targeted.
The hybrid method has reliably produced the quality
solutions for inertia weights above 0.6 for all of the
cases. Similarly, the average computation time taken
by the CPSO method to solve the test cases for



various inertia weights is also calculated.
The optimal values for Cjand C, are selected by

conducting similar experiments for both the
strategies. For the first strategy the value of

C,and C, are found to be (1.8) because of the

linear nature of the constraints, but for the second
strategy with it value results in deviation of optimal

point. For this case it is found the value of C; and

C, is lying between (0.8) and 1.0.

B. Numerical Solutions

Two test systems are taken to demonstrate the
feasibility of the proposed method. A simple 3-bus
system with 2 generators and a modified IEEE 30—
bus system with 6 suppliers and 21 consumers are
taken as test systems. The bidding equations are
known. For the producer surplus maximization
problem it is assumed the bidding constant of the
competitive generators are known. MATLAB is
used as a front-end language and the simulations are
carried out on a Pentium IV, 1-GHz, 512-MB RAM
processor.
Test System 1: A 3-bus [21] system with 2 suppliers
and two loads are considered. The network diagram

is shown in Figure 1.

P Pz
1 H

3

Load 1, L1

Fig. 1. Network diagram of the 3 bus test systems.

Load 2, L2

The cost functions and the unit capacity of the two
suppliers are given below,

C, = 0.01P° + 12P+ 300 $/hr, 50 < P, < 500 MW

2

Ca2 : 0.015P2 t 6P2+ 400 $/hr,100 ¢ P; < 600 MW

The demand function and their limits of the 2 loads
are as follows,

B, = 0.016L,”> + 35L, $/ hr,
0< L, < 900MW

B, =40L, % hr, 0< L, < 200MW
The total system load is 1000 MW.
Producer surplus maximization: -

The value of bidding constant of supplier 2 (K,)

is varied from 1 to 3. The profitable bidding constant
of the supplier 1(K,) is obtained. Similarly the
bidding constant of supplier 1 (K, ) is varied from 1
to 3 and the corresponding maximum profitable
value of supplier 2(K,) is obtained. The variation
of profit and the bidding constant for supplier 1 and
supplier 2 are plotted in Figure 2 and 3 respectively.

%10
25

150 VAR
y

profit of the supplier 1 (§)
<

0.5-

D1 1‘2 1‘4 1‘6 1!8 é 2!2 2‘4 2‘5 2‘8 3
Bidding Constant of supplier 2 (k2)
Fig. 2.Profit variation of supplier 1 for the various
value of bidding constant K,

3)(10'

25+ o

5 7

Profit of the supplier 2(8)
\

o5 7

1 1.2 14 1.6 18 2 22 24 26 28 3
Bidding Constant of supplier 1(k1)

Fig. 3.Profit variation of supplier 2 for the various
value of bidding constant K

The CPSO parameters used for this simulation are
listed below,
Number of agents
Number of iterations

=100
=175

=1.8
The result of a sample run is given in Table 1.

Learning factors (C},C5)



Table.1 Result of the 3 bus systems for the producer
surplus maximization

Fixed Profitable ~ Bidding | Profit ($/hr)
bidding constant
constant | CPSO CPSO- CPSO | CPSO-
of the SQP SQP
supplier
Gl | K2=1.8 | KI=2.0 Ki1=2.1 | 10,575 | 10,590
G2 | KI=1.8 | K2=1.86 | K2=1.86 | 12,652 [ 12,652

Maximization of Social Welfare Function: -

The difficulty with this problem is both the
supplier and load are submitting their bids in the
market. CPSO parameters used in the previous test
system will not give optimal solution. The high
values of learning factors move away the solution
vector from the optimal solution. So it is tested the
system with various learning factors to find the
optimal value of the learning factors.

The CPSO parameters used for this simulation are
listed below,

€l £

figd.  Network diagram of IEEE 30 bus systems

The generalized quadratic function and the
corresponding values with their unit capacity limits
are given in Table 3.

Table.3 Cost coefficients and limits of the modified IEEE
30-bus systems

Number of agents =100 Genera | Cost coefficients Pimax Pi,min
Number of iterations =75 tors a; b; i
The result of a sample run is given in Table 2. G2 0012 |15 150 150 5
Table.2 Result of the 3 bus systems for the social welfare | G3 0.040 |18 250 150 5
maximization G4 0.006 |10 100 200 |5
g constant :
constan G6 0.010 15 150 150 5
Lof the I°CPSO [ CPSO- | CPSO | CPSO-
. PP SQP SQP For demand side bidding, the generalized bidding
Gl | 18 | K=185 | K=1.85 | 88.175 | 88.175 equation given in [11] is used and it is given
G2 | 18 [ K=21 | K=20 | 13267 | 1327.9 below,
o R
G5 | 18 | K199 | K-1.99 | 891.65 | 89165 _  Ihe total system load is 600MW.
G6 | 1.8 Ke=1.95 | Ke=1.97 [ 1590.3 1592.6

The maximum value of Social Welfare function is
obtained as 58.3798 $/ MWhr . The market price is
decreased from 27.031$/ MWhrto 20.0090
$/ MWhr .

Test System?2: A modified IEEE 30 bus system with
6 suppliers and 21 loads are considered. The
network diagram is shown in Figure 4.

Producer surplus maximization: -
The CPSO parameters used for this simulation are
listed below,

Number of agents =100
Number of iterations =75
Learning factors (C, & C,) =1.7

The result of a sample run is given in Table 4.



Table.4 Results of the IEEE 30 bus systems for
the producer surplus maximization
Quantity (MW) Profit($/hr)
CPSO CPSO- CPSO CPSO-SQP
SQP
G1 | 400.4325 | 400.4495 | 0O 0
G2 | 343.9042 | 344.8045 1262.982 1263.6740
L1 616.2451 | 616.6551 21411.931 | 21412.731
L2 128.1213 | 128.5989 [ 2569.9707 | 2570.8206

Maximization of Social Welfare Function: -

The procedure to obtain the maximum social
welfare function is similar to 3-bus test system. For
this test system, the results of three cases are
discussed and it is given in Table 5. The CPSO
parameters are adjusted with respect to the constraint
to get the optimal solution. The results obtained
from integrated CPSO-SQP method is superior to
the results obtained from CPSO method. The
convergence comparison of results with out
considering losses and with loss allocation is given
in Fig 5.

850

----C-PSO
—C-PSO-5QP
With out considering losses
800 .
At
8
B
5501 1
2
2
g With loss allocation
=
Soof -
‘With considering transmission limits
o~ ~
v
650}/ -
i
GCmO IIO 213 3‘0 ‘ 5‘0 6‘0 7‘0 36 9‘0 100
40NO of iterations.

Fig.5. Convergence characteristics with losses and with
loss allocation

The results of all the three cases with the quantity
and the profit of all the entities are tabulated in
Table 5.

Table.5 Results of the IEEE 30 bus systems for the social
welfare maximization (CPSO — SQP)

List of | With out | With loss | Loss allocation

Gener | considering loses | allocation with transmission

ators limits

and

Loads | SWF =|SWF = 711.289| SWF =
800.065%/Mwhr $/MWh 668.7058$/Mwh
Quantity |Profit | Quantity | Profit | Quantity | Profit
(MW) ($/h) (MW) ($/h) (MW) ($/h)

P1 108.45 |580.50 |91.270 |602.82 |76.322 |506.34

P2 68.067 | 741.17 |117.09 |1243.5 |132.33 |1321.3

P3 88.740 21496 |[130.38 |0 127.01 |0

P4 129.06 |2061.5 |80.310 |1402.7 |94.038 |1601.7

P5 119.02 0 |63.575 |339.76 |80.926 |298.33

P6 41.173 | 481.65 |116.47 |1292.9 |71.308 |836.77

L1 7.514 -123.17 [36.437 |834.66 |19.738 |9.3282

L2 11.953  |-118.92 | 16.705 |-67.988 |36.478 |847.40

L3 27.841 34249 |44.770 |1509.4 |36.205 |827.97

L4 24.077 |172.03 |33.968 |667.01 |13.083 |-117.28
L5 21.553 | 78.598 |41.330 |1210.8 |27.873 |326.31

L6 9.551 -128.20 [32.112 |551.02 |29.249 |397.01

L7 41.819 |1289.5 |37.075 |880.38 |[25.253 |205.17

L8 27.325 |316.93 |28.061 |328.10 |33.510 |646.65

L9 29.261 |416.36 |40.124 | 1112.7 |24.967 |193.03

L10 36.700 |886.74 |44.862 |1517.7 |13.394 |-114.09
L11 17.007 |-46.513 |29.192 |386.17 |11.366 |-129.97
L12 29.644 |437.15 |21.352 |52.497 |18.095 |-33.247
L13 22980 [129.33 |20.072 |13.448 |39.64 1084.3

L14 31.763 559.04 |27.306 |291.19 |38.031 |961.02

L15 34.649 | 743.23 |4.398 -96.227 |38.706 | 1012.1

L16 35.645 |811.60 |41.719 |1243.1 |39.899 |1105.5

L17 31.397 |537.16 |26.267 |242.83 |20.273 |24.745

L18 25908 [250.33 |2.554 -62.875 38.724 | 1013.8

L19 39.296 |[1083.1 |10.291 |131.12 |21.860 |75.085

L20 32.640 |612.83 |11.753 |-131.00 | 12.999 |-118.00
L21 15931 |-67.861 |24.499 |166.96 |7.5059 |-127.91

The value of social welfare function is 800.0654
$/MWh, if the losses are not considered. When the
losses are considered and it is allocated equally
among all the entities (Pro — rata method) then the
value of welfare function is decreased to 711.2896
$/MWh. This value is further reduced to 668.7058
$/MWh when we include the transmission line limits
in to the problem.

C. Computation Analysis of proposed Algorithm
The efficiency of the proposed algorithm is
checked with various test cases. Using canonical
PSO (CPSO) and CPSO integrated with SQP does
the simulation of test cases. The analysis is carried
out with respect to computational time and the
capability of the algorithm to tackle the variations in
parameters. By comparing the various test case



results, it is found that CPSO take lesser iterations to
give the optimal solution compare to General PSO
(GPSO). The results are improved after
incorporating SQP as a local optimizer. Initially the
SQP subroutine is used at the end of the CPSO, i.e.,
the final results obtained by using CPSO are taken as
initial values for the SQP. The results are improved
further by integrating SQP with PSO in such a way
that, it will search for the better solution whenever

the value of G,,, is replaced. This will explore the

solution space effectively to obtain the global
optimal solution. CPSO integrated with SQP gives
very good results with little more computational
time than other methods. It will effectively take up
the variations in the input parameters than other
methods.

6. Conclusion

The proposed CPSO-SQP method is simple,
reliable and gives accurate results with in the
reasonable computation time. The CPSO with
constriction factor explores the solution space to
obtain near global solution. The application of
scaling factor for inertia constant ensures the
convergence of the solution. SQP is used to fine tune
the solution obtained from CPSO. The proposed
algorithm is tested with two test systems and the
results are tabulated. Three various conditions are
considered to find the maximum value of social
welfare function. In the first case the losses are not
considered, in the second case the losses are
considered and allocated equally to all the entities.
In the third case the line limits are considered. The
variation of social welfare function for all the cases
is analyzed by using the proposed algorithm.
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