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Abstract: with the deregulation of electric power systems,  
market  participants  are  facing  an  important  task  of  
bidding  the  energy  in  a  pool  operation.  This  paper 
essentially  aims  to  propose  a  new  optimal  bidding  
solution methodology for both power suppliers  and for  
the  system,  with  the  impact  of  line  limits  and  the  
transmission losses. The model of the producer surplus  
maximization is a bi-level maximization problem and the  
model  of  social  welfare  function  (SWF)  with  elastic  
demand is a maximization problem. In this paper a novel  
hybrid  optimization  technique  based  on  PSO-SQP  is  
developed to solve the problem. In this hybrid algorithm,  
Canonical PSO (CPSO) with constriction factor is used  
as  a  global  optimizer  and SQP as the local  optimizer.  
Simulations have been carried out on a 3-bus system and  
modified IEEE 30-bus system, to show the robustness and  
the effectiveness of the proposed hybrid algorithm.

Index Terms -  Bi-level optimization, optimal bidding 
strategy,  pool  dispatch,  particle  swarm  optimization,  
Sequential Quadratic Programming 

1. Introduction
     In the recent past,  many countries around the 
globe  have  been  undergoing  massive  changes  to 
introduce  competition  in  power  industry.  Various 
models  have been proposed and tested in different 
countries  [1].  Two  market  models;  power  pool 
model  and  bilateral  model  are  widely  used 
throughout  the  world.  In  the  pool  model,  the 
Independent  System  Operator  (ISO)  in  the  power 
pool  acts,  effectively,  like  a  broker  for  managing 
energy suppliers’  bids and large customers’ offers, 
to establish a market-clearing price (MCP). MCP is 
the bid price of the most expensive supplier that is 
needed to completely meet the demand, and is used 
as  the  basis  for  the  settlement  of  market 
commitments. Regardless of the bidding prices from 
suppliers,  all  selected  bidders  are  paid  the  MCP. 
This approach is adopted to encourage suppliers in a 
competitive  market  to  price  energy  close  to  their 
marginal  costs.  In  bilateral  transaction  bulk  of 
energy transactions are carried out through contracts 

between suppliers and customers.
      Most of the pool markets in United States are 
operated  by  ISO,  those  who  are  responsible  for 
energy  settlement  process  in  the  power  pool.  The 
sealed bid auction is widely used in the pool market. 
The  bids  are  generally  in  the  form  of  price  and 
quantity quotations and specify how much the seller 
or buyer is willing to sell or buy, and at what price. 
Each supplier  submits  a  sealed  bid  to  the  pool  to 
compete for the supply of the forecast load that is 
broadcast  by  the  pool.  Theoretically,  in  perfectly 
competitive market, suppliers should bid at, or very 
close  to,  their  marginal  production  costs  to 
maximize returns. However, the electricity market is 
not perfectly competitive, and power suppliers may 
seek  to  benefit  by  bidding  a  price  higher  than 
marginal production cost. Each supplier’s objective 
is to maximize benefit, therefore, given its own costs 
and  constraints  and  its  anticipation  of  rival  and 
market  behavior,  a  supplier  faces  the  problem  of 
how best  to construct  its  offer  (bid)  price.  This  is 
called the optimal bidding strategy problem. On the 
other  side,  the  pool  operator  will  use  a  dispatch 
strategy that minimizes  customers’ payments given 
the supply costs represented in the suppliers’ bids, 
which  is  similar  to  pool  operations  in  United 
Kingdom. 
     In recent years, some research has been done on 
building optimal  bidding strategies for competitive 
generators. This problem was addressed for the first 
time  by  David  [2].  He  discussed  a  conceptual 
optimal bidding model and a dynamic programming 
based  approach  for  England-Wales  electricity 
markets, in which each supplier is required to bid a 
constant price for each block of generation. System 
demand variations and unit commitment costs were 
considered  in  the  model.  In  [3],  a  brief  literature 
survey  about  strategic  bidding  in  competitive 
electricity market was presented. In general there are 
two  methods  for  developing  bidding  strategies  in 
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competitive electricity market: game and non game 
based methods. In [4] & [5], the competition among 
participants  is modeled as a non-cooperative game 
with  incomplete  information,  and  the  imperfect 
information  of  the  suppliers  is  solved  using  Nash 
equilibrium. 
     In [6], a dynamic model of strategic bidding for 
the  situation  with  three  power  suppliers  was 
proposed  by  utilizing  the  historical  and  current 
market  clearing  prices.  This  model  is  heuristic  in 
principle,  and  is  not  directly  applicable  to  the 
general case with more than three suppliers. In [7], 
the  bidding  behavior  model  of  the  suppliers  is 
developed, and how a supplier would construct his 
bid  as  a  function  of  his  private  cost  and  cost 
distributions of other bidders are also discussed. In 
[8],  a  model  and a  method for  optimization-based 
bidding  and  self-scheduling  are  discussed  with 
respect to New England market based on lagrangian 
relaxation  method.  In  [9],  an  optimal  bidding 
strategy  for  the  power  suppliers  are  framed  as  a 
stochastic optimization problem and it is solved by 
Monte Carlo based and optimization based methods. 
An interior - point optimal power flow model was 
proposed  in  [10]  for  the  sensitivity  based  optimal 
bidding  strategy  for  the  suppliers.  The  impact  of 
congestion on the profit  of the suppliers  and clear 
problem formulation with the solution by using Nash 
equilibrium is discussed by  Peng [11]. In [12], the 
bidding strategy problem is modeled as a two level 
optimization problem. In the first level the suppliers 
are maximizing their own profit and in the second 
stage  ISO  dispatching  the  power  subject  to 
minimization  of  total  system  cost.  The  bidding 
strategy  model  for  risk  averse  and  risk  seeker 
suppliers  are  discussed  in  [13].  Recently, a  global 
optimization  technique  known  as  Particle  Swarm 
Optimization  (PSO)  has  become  a  candidate  for 
solving the optimization problem in power system. 
PSO is a stochastic search algorithm and it searches 
randomly from point to point to reach the optimum. 
In [14], the maximization of the producer surplus is 
modeled  as  a  bi-level  optimization  problem  and 
using  PSO  solves  it.  The  rate  of  solution 
convergence is very fast at the beginning with PSO. 
Thereafter,  it  is  very  slow  up  to  the  end  of 
convergence. This results in large computation time. 
In  contrast  the  deterministic  Sequential  Quadratic 
Programming  (SQP)  method  is  accurate  and  fast 
when the variations in the control variables are small 

and  is  very  effective  in  correcting  the  moderate 
constraint violations. The above fact suggests that a 
hybrid  method  with  PSO  algorithm  for  initial 
solution  and  SQP  method  for  getting  the  final 
solution be an effective and fast method. In [15], the 
effect of demand elasticity on the  strategic bidding 
behavior of the producers is discussed. A model to 
address  generation  companies’  medium-term 
strategic  analysis  based  on  a  conjectured-price-
response  market  is  discussed  in  ref  [16].  The 
problem  of  the  development  of  optimal  offering 
strategies  by  electricity  producers  in  day-ahead 
energy auctions with step-wise energy offer format 
is  discussed  in  ref  [17].  In  [18],  the  transmission 
enhancement in a competitive electricity market  is 
analyzed in terms of its impact on the social welfare 
function. 
     Given this background,  this  paper proposes a 
dispatch  algorithm  based  on  Canonical  PSO 
(CPSO),  which  is  combined  with  SQP.  In  this 
CPSO-SQP based hybrid algorithm CPSO used as a 
base search algorithm and SQP used as a fine tuner. 
This paper considers the impact of transmission line 
limits and transmission line losses  on the dispatch 
cost of the pool. 
     The  first  part  of  this  paper  focuses  on  the 
application  of  the  proposed  hybrid  algorithm  to 
develop the bidding strategy for power suppliers to 
maximize their profit (maximization of surplus), the 
second part  describe the strategy followed by ISO 
for  settling  the  market  to  minimize  the  system 
operating  cost  (Social  Welfare  Function  (SWF) 
Maximization).  The  effectiveness  of  this  hybrid 
algorithm is checked with simple 3-bus system and 
the modified IEEE 30-bus system and the results are 
tabulated.

2. Problem formulation
In this paper two pool  strategies for  deregulated 

power market are developed. In the first strategy the 
maximization  of  the  producer  surplus  is  discussed 
and  in  the  second  strategy  the  maximization  of 
social  welfare  function  is  discussed.  The  problem 
formulations of both are given below,

Strategy I: Producer Surplus Maximization
     It is a bi-level optimization problem. In the first 
level market settlement problem is solved to find the 
value of the MCP, then in the next level suppliers 
are  trying  to  increase  their  profit  by  finding  the 
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suitable value of bidding constant. For simplicity it 
is assumed that consumer side bidding is constant.

A bid consists of price offers and the amount of 
load  to  be  satisfied  by  the  market  for  each  hour. 
Price  offers  specify  a  stack  of  MW  levels.  By 
integrating a staircase price offer curve, the bidding 
cost  function  is  piecewise  linear.  To  reduce  the 
number  of  parameters  associated  with  a  bid,  the 
piece-wise  linear  bidding  cost  function  is 
approximated  by  a  quadratic  function,  then  the 
marginal cost curve of ith producer can be expressed 
as,

    gn1.........  i  ; giPiβiα  )gi(PmciC =+=
             (1)

Where,  iα and  iβ  are  the intercept  ($/MWh) and 

slope )2($/MWh of the cost curve, giP is the power 

output (MW) for  the  ith generator,  gn is  the  no  of 
suppliers. 
For the ith supplier, the strategic supply function is 
formulated as,    

)giPiβi(αik)gi(PiC +=        (2)

This can be reformulated as,

    gPibia)gi(PiC +=
                         (3)

 The  customers  benefit  function  )dj(PjB  is 

modeled  with  a  linear  demand  curve  and  it 
expressed as,

      d1....n  j   ; djPjejd)dj(PjB =+=
                                       (4)

Where,  jd and  je  are,  respectively,  the  intercept 

($/MWh) and slope )2($/MWh , djP is the demand 

(MW) of  the  jth customer.  dn ,  is  the  no  of 
customers.

To  find  the  profitable  value  of  ik  for  the  ith 

supplier, it is assumed that the bidding strategies of 
other  suppliers  are  known.  With  the  same 
assumption,  the  profitable  value  of  k  for  all  the 
suppliers  are  found with  out  violating  any system 
constraints.  

In the first level the value of MCP is calculated by 
using  the  bidding  equations  submitted  by  the 
suppliers  and  the  demand.  The  objective  function 
and the constraint for the next level to maximize the 
supplier profit is given below,      

   )gi(PmciC - )gi(P*MCP profit Max =      (5)

Subject to,     
  Energy balance constraint,

    
Loss

dn

1j djP
gn

1i giP P+∑
=

=∑
=

        (6)

Where,  LossP  is  the  total  system transmission 
loss.
   Individual generation constraint,

                 maxgi,PgiPmingi,P ≤≤                       (7)

Strategy  II:   Maximization  of  social  welfare  
function

In  this  problem  both  the  suppliers  and  the 
customers get the benefit from the pool, otherwise it 
can be the profit to the ISO.   

The objective function and the set of equality and 
inequality constraints are listed below,

 
dn

1j

gn

1i
)gi(PiC)dj(PjBMAX
















∑
=

∑
=

−            (8)

Subject to,
Power balance constraint,

LossP
gn

1i

dn

1j djPgiP +∑
=

∑
=

=              (9)

Individual generation constraint,

 maxgi,PgiPmingi,P ≤≤ ; gni .......1=          (10)

Individual demand constraint,

  maxdj,PdjPmindj,P ≤≤ ; 1....... dj n=            (11)

Line flow constraints

   
maxj,LjL ≤

   ; 
NLj .......1=

            (12)
Where, NL is the total number of lines in the given 
network. jL  is the MVA power flow in jth line. AC 
load flow model is used to check the violations in 
line limits as well as to compute the losses.  

3. PSO Based Bidding Strategies
A. Overview of PSO

PSO  is  one  of  the  modern  heuristic  algorithms 
developed  by  Kennedy  and  Eberhart  [20].  It  has 
been  developed  through  simulation  of  simplified 
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social  models.  Compared  to  other  evolutionary 
methods,  the  advantages  of  PSO  are  ease  of 
implementation and only few parameters to adjust. 

Similar  to  other  evolutionary  algorithms,  PSO 
must  also  have  a  fitness  function  that  takes  the 
agents position and assigns to it a fitness value. For 
consistency, the fitness function is the same as for 
other  evolutionary  algorithms.  The  position  with 
maximum fitness value in the entire run is called the 
global best )best(G , each agent also keeps track of 
its  maximum  fitness  value,  called  its  local  best

)( LbestP , and each agent is initialized with a random 

position and random velocity.  The velocity  jV  of 
the  jth agent,  each  of  n  dimensions,  is  accelerated 
toward the global best and its own personal best.
         Agent’s velocities  on each dimension are 
clamped to maximum allowable velocity maxV if the 
sum of accelerations exceeds this limit.  maxV  is an 
important  parameter  that  determines the  resolution 
with which regions between the present position and 
the  target  positions   are  searched.  If  maxV  is  too 
high, agents may fly past good regions. If it is low, 
agents may not explore sufficiently beyond locally 
good  regions.  To enhance  the  performance  of  the 
PSO maxV is set to the value of the dynamic range of 
each  control  variable  in  the  problem.  After 
performing sufficient experiments on various types 
of  test  cases,  it  has  been  concluded  that  a  better 
approach is to use a “rule of thumb” to limit maxV to 
the  maximum  limit  of  the  control  variable  of  the 
problem.
        PSO also has a well-balanced mechanism with 
flexibility to enhance and adapt to both global and 
local exploration abilities. This is realized by using 
an inertia weight  ω  and is usually calculated using 
the following expression:

)ωmax(ωmaxωω min−−=  
maxiter

iter
           (13)

Where  minωmaxω is  the  initial/final  weight, 

maxiter  is the maximum iteration count, and iter is 
the current  iteration number.  For  largest  values  of 
inertia  weight,  PSO has  global  exploration  feature 
and vice versa. Even then, there is a need for a trade-
off between the quality of solution and fine-tuning 

of the PSO while selecting its simulation parameters.
Experimental  results  indicate  that  it  is 

preferable to initialize the inertia weight to a large 
value, in order to promote global exploration of the 
search space, and gradually decrease it to get more 
refined solutions.  Thus an initial  value  around ‘1’ 
and a gradual decline towards ‘0’ is considered as a 
proper choice forω . If  maxω is the maximum value 
of  the  inertia  weight,  two real  valued  parameters,

scaleω  and iterscaleω ]1,0[∈ are determined, such 

that  ω is  linearly  decreased  from  maxω to 

,scaleωmaxω over  iterscaleωmaxiter  iterations. 

Then  for  the  last  ( )iterscaleiter ω−1max  iterations,  it 
has  a  constant  value,  equal  to scaleωω max .  Proper 
fine-tuning  of  the  parameter  may  results  in  faster 
convergence and alleviation of local minima.

This  paper  deals  with  maximization  with 
using constriction model [21] to find the velocity of 
the  particles,  which  is  much  suitable  for 
maximization problems. The equation for velocity of 
the  particle  by  using  this  is  give  below, 

(14)                                    )]1jX,best(X2rand*2C

)1jXbestL,(X1rand*1C1)(tjv*χ[ωjv

−

+−−+−=

       
Where, X is  the  control  variable  of  the 
objective function ( )Xf .
   χ ,  is  the  constriction  factor  and  it  is  derived 
analytically through the formula      

 χ  = ϕϕϕ 422

2w

−−−                                (15)

21 CC +=ϕ    And w = 1

The CPSO model is used for this problem, where the 
value of 2C1C = .

The design of the CPSO constriction factor 
variant was tuned in a similar manner as the inertia 
weight variant.

B. Producer surplus maximization using PSO 
The  steps  involved  in  producer  surplus 
maximization is as follows,
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1)  Generation of Initial Conditions: The  initial  
conditions  of  all  the  ‘M’ agents  (m = 1,2,3…..M)  
have to be generated randomly within the limits. For  
this  problem it  is  assumed that  the bidding of  the 
other suppliers is known, and then random numbers  
has to be generated for the bidding constant k''  for  
the ith supplier. Find the value of giP  by using the  
following equation,

iαik)iβik(MCPgiP −=                   (16)

Check for violations in individual generator power limits 
and the energy balance equation. Set the iteration count   t 
= 1.
 2)  Evaluation of Agents: Each agent is  evaluated 
using  the  fitness  function  of  the  problem  to 
maximize the bidding constant ''k  of the supplier ''i
. The real power limit of the generator is constrained 
by adding  them as the exact penalty terms to the 
objective function to form  a generalized fitness 
function mF  , and is given below,

mF = )limitgi,Pgi(P
gn

1i 1μ)(aiCgiP*MCP −∑
=

+− giP    (17)

Where 1µ is the penalty parameter, and













>

<

=

otherwise,giP
maxgi,PgiP if,maxgi,P
mingi,PgiP if,mingi,P

limittgi,P       (18)

Search  for  the  best  fitness  function  value  bestiF ,  
among  the  M agents.  Set the agent associated with 

bestmF ,  as the global best  )( bestG  of all the agents. 
The best fitness value of each agent up to the current 
iteration is set to that if the local best of that agent

)( ,bestLP .
3) Modification of Each Searching Point: Using the 
global best and the local best of each agent up to the 
current iteration,  the searching point of each agent 
has to be modified according  to the following 
expression:

1)(tikivik −+=   (19) 
Where,

(20)                                  )]1tk-bestG,(k2rand*2C

)1tbestPL,(k1rand*1C1)(tiv*χ[ωiv

−

+−−+−= k
 

where, 1rand and  2rand  are random numbers 
between 0 and 1, C1 and C 2  are positive constants 
called  as  the  cognitive  and  social  parameters 
(acceleration  parameters)  respectively.  Similar to 
inertia weight, this  factor  also  controls the 
exploration of the PSO. This acceleration factors are 
pull the solution towards  bestP  and  bestG  positions. 
After fixing the value of C1  and C2, find the value of 
constriction factor [ χ ], select the  Proper values of

maxω , scaleω  and iterscaleω  .
4) Modification of the Global and the Local Bests: The 
value of bestLP ,  and bestG  values are updated for each 
iteration by evaluating the fitness function of current 
iteration to find the current best value and compare it 
with all the previous iterations respectively.    
5) Termination Criteria: Repeat from step 2 until the 
tolerance  value  is  reached  or  maximum  value  of 
iteration is reached   

C.  Maximization  of  social  welfare  function  using 
PSO 

1)  Generation of Initial Conditions: For  this 
problem the ‘M’ agents are generated randomly for 
both  generation (Pgi)  and demand (Pdj)  with in the 
limits.  The  size  of  matrix  for  generators  and 

demands are ]gn x [m  and ]
d

n x [m  respectively. 

Run the AC load flow model to find the losses of the 
system and this  loss is equally allocated to all  the 
participants of the pool (both generators and loads) 
by  using  pro-rata  method.  Set  the  iteration  count 
iteration count   t = 1.
   2)  Evaluation  of  Each  Agent: Each  agent  is 
evaluated using the fitness function of the problem 
to  maximize  the  social  welfare  function.  The real 
power limit of the generator and the real power limit 
of  load is  constrained by adding them as the exact 
penalty terms to the objective function to form  a 
generalized fitness function mF  , and is given below,

)limiti,Vi(V
gn

1i
)gi(P

gn

1i iC
dn

1j
)dj(PjBmF 1 −∑

=
+∑

=
−∑

=
= µ +

)limiti,LFi(LF
NL

1i2μ −∑
=

                                   (21)

Where 1µ , 2µ  is the penalty parameter, and NL is the 
total no of transmission lines,
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











>

<

=

otherwise,iV

max
iViV ifmax

iV

min
iViV ifmin

iV

limiti,V              (22)





 >

=
otherwise,iLF

max
iLFiLF ifmax

iLF
limiti,LF           (23)

Search for the best value of all the fitness function 
values  bestkF ,  from kF , Mk .....2,1=  Follow  the 
same  procedure  similar  to  strategy  1  to  find  the 
value of )( bestG  and )( ,bestLP .
3) Modification of Each Searching Point: The 
searching point of each agent has to be modified 
according to the following expression:

1)(tgiPiv(t)giP −+=                         (24)

              1)(tdjPjv(t)djP −+=                         (25)

  where,

(26)                                          1)]-(tgiP-bestgi,(P2rand*2C

1)-(tgiP
bestL,gi(P -1rand*1C1)(tiv*[ω χiv +−+−=

 

(27)                                        1)]-(tdjP-bestdj,(P2rand*2C

1)-(tdjP
bestL,dj(P -1rand*1C1)(tjv*[ω χjv +−+−=

 where, iv and jv  gives the velocities for generators 

giP  and loads djP  respectively.
4) Modification of the Global and the Local Bests: The 
value of bestLP ,  and bestG  values are updated similar 
to the strategy 1. 
5) Termination Criteria: Repeat from step 2 until the 
tolerance  value  is  reached  or  maximum  value  of 
iteration is reached.

4. Sequential Quadratic Programming
     The SQP method seems to be the best nonlinear 
programming  method  for  constrained  optimization 
[22]. It is the extension of quadratic programming, it 
is the non-iterative method, but SQP is an iterative 
method  most  suited  for  constrained  non-linear 
problems.  It  outperforms  every  other  nonlinear 
programming  method  in  terms  of  efficiency, 
accuracy,  and  percentage  of  successful  solutions, 
over a large number of test problems. The method 
closely resembles Newton’s method for constrained 

optimization  just  as  is  done  for  unconstrained 
optimization.  At  each  iteration  approximation  is 
made  of  the  Hessian  of  the  Lagrangian  function 
using  a  Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) quasi-Newton updating method. This is then 
used  to  generate  a  quadratic  programming  sub 
problem whose  solution  is  used  to  form a  search 
direction  for  a  line  search  procedure.  For  the 
minimization problems, the Jacobean and Hessian is 
positive definite (all the eigen values having positive 
real  parts).  Since  our  objective  function  is  to  be 
maximized,  it  is  needed  to  change  the  search 
direction in such a way that the Hessian matrix is 
negative  definite  (all  the  Eigen  values  having 
negative real parts). In this paper, SQP is used as a 
local  optimizer  to  fine-tune  the  better  region 
explored by the PSO algorithm in its run. Using the 
MATLAB optimization toolbox simulates  the SQP 
subroutine.

5. Simulation Results
A. Optimal Selection of CPSO Parameters

Selecting the optimal range of inertia weigh ω and 
acceleration factors  1C and 2C  considerably affects 
the performance of the PSO algorithm. Therefore, to 
fix an optimal range of inertia weight, to solve the 
two  proposed  strategies,  experiments  were 
conducted by varying the value agent size, cognitive 
parameter )1(C ,  social  parameter )2(C ,  starting 

value  of  the  inertia  weight )max(ω ,  final  value 
)( scaleω of  ω in  percentage  of  maxω iterscaleω  

percentage of iterations,  for which  maxω is reduced 
and maximum value of step size )max(V .

The inertia weight varied from 2.0 to 0.1, in steps 
of 0.1, the agent’s size is varied from 10 to 1000 in 
steps of 10, and the maximum number of iteration is 
varied  from  10  to  250  in  steps  of  10.  Different 
possibilities  of  trial  runs  were  conducted  to 
optimally  estimate  all  the  parameters  for  the 
proposed CPSO method.

To ensure reliability in producing quality solutions 
by the  proposed method,  the  relative  frequency of 
convergence  toward  a  quality  solution  is  targeted. 
The hybrid method has reliably produced the quality 
solutions for inertia weights above 0.6 for all of the 
cases. Similarly, the average computation time taken 
by  the  CPSO  method  to  solve  the  test  cases  for 
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various inertia weights is also calculated. 
The optimal values for  1C and 2C are selected by 

conducting  similar  experiments  for  both  the 
strategies.  For  the  first  strategy  the  value  of 

21  and CC  are  found  to  be  (1.8)  because  of  the 
linear  nature  of  the constraints,  but  for  the second 
strategy with it value results in deviation of optimal 
point. For this case it is found the value of  1C  and 

2C  is lying between (0.8) and 1.0. 
B. Numerical Solutions
    Two test systems are taken to demonstrate  the 
feasibility of the proposed method. A simple 3-bus 
system with 2 generators and a modified IEEE 30–
bus system with 6 suppliers and 21 consumers are 
taken  as  test  systems.  The  bidding  equations  are 
known.  For  the  producer  surplus  maximization 
problem it  is  assumed the bidding  constant  of  the 
competitive  generators  are  known.  MATLAB  is 
used as a front-end language and the simulations are 
carried out on a Pentium IV, 1-GHz, 512–MB RAM 
processor. 
Test System 1: A 3-bus [21] system with 2 suppliers 
and two loads are considered. The network diagram 

is shown in Figure 1.      

Fig. 1. Network diagram of the 3 bus test systems.

The cost functions and the unit capacity of the two 
suppliers are given below,

MW 500P50 $/hr, 3001201.0 11
2

11 ≤≤++= PPCa  

MW 6001P100 $/hr, 400262
2015.02 ≤≤++= PPaC  

The demand function and their limits of the 2 loads 
are as follows,

1
2

11 35016.0 LLB +=  hr,$/  

MWL 9000 1 ≤≤
22 40LB =  hr,$/  MWL 2000 2 ≤≤

The total system load is 1000 MW.
Producer surplus maximization: -

The value of bidding constant of supplier 2 ( 2K ) 

is varied from 1 to 3. The profitable bidding constant 
of  the  supplier  1( 1K )  is  obtained.  Similarly  the 
bidding constant of supplier 1 ( 1K ) is varied from 1 
to  3  and  the  corresponding  maximum  profitable 
value of supplier 2 )2(K  is obtained. The variation 
of profit and the bidding constant for supplier 1 and 
supplier 2 are plotted in Figure 2 and 3 respectively.

Fig. 2.Profit  variation  of  supplier  1  for  the  various 
value of bidding constant K2

Fig. 3.Profit  variation  of  supplier  2  for  the  various 
value of bidding constant K1

The CPSO parameters used for this simulation are 
listed below, 
  Number of agents                 = 100
  Number of iterations             = 175
  Learning factors ( 2,1 CC )    = 1.8 
The result of a sample run is given in Table 1.
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Table.1 Result  of  the  3  bus  systems  for  the  producer 
surplus maximization

Maximization of Social Welfare Function: -
The difficulty with this problem is both the 

supplier  and  load  are  submitting  their  bids  in  the 
market. CPSO parameters used in the previous test 
system  will  not  give  optimal  solution.  The  high 
values  of  learning factors  move  away the solution 
vector from the optimal solution. So it is tested the 
system  with  various  learning  factors  to  find  the 
optimal value of the learning factors. 
The CPSO parameters  used for this simulation are 
listed below,
   Number of agents           = 100

Number of iterations           = 75
Learning factors ( 2,1 CC )    = 1.2

The result of a sample run is given in Table 2.

Table.2 Result of the 3 bus systems for the social welfare 
maximization

The maximum value of Social Welfare function is 
obtained as 58.3798 MWhr$/ . The market price is 
decreased  from  27.031 MWhr$/ to  20.0090

MWhr$/ .  

Test System2: A modified IEEE 30 bus system with 
6  suppliers  and  21  loads  are  considered.  The 
network diagram is shown in Figure 4.

fig4. Network diagram of IEEE 30 bus systems

The  generalized  quadratic  function  and  the 
corresponding values with their unit capacity limits 
are given in Table 3.

Table.3 Cost coefficients and limits of the modified IEEE 
30-bus systems

Genera
tors 

Cost coefficients Pi,max Pi,,min

ai bi ci

G1 0.010 20 200 150 5

G2 0.012 15 150 150 5

G3 0.040 18 250 150 5

G4 0.006 10 100 200 5

G5 0.040 18 200 150 5

G6 0.010 15 150 150 5

For  demand side  bidding,  the  generalized  bidding 
equation given in [11] is used and it is given 
below,

2
21 5.0 iiiii PdPdB −=  

The total system load is 600MW.   

   Producer surplus maximization: -
The CPSO parameters used for this simulation are 

listed below, 

Number of agents    = 100
Number of iterations                 = 75
Learning factors ( 21 & CC )       = 1.7
The result of a sample run is given in Table 4.

Biddin
g 
constan
t of the 
supplie
r

 Profitable  Bidding 
constant

Profit ($)

CPSO CPSO-
SQP

CPSO CPSO-
SQP

G1  1.8 K1=1.85 K1=1.85 88.175 88.175
G2  1.8 K2= 2.1 K2= 2.0 1326.7 1327.9
G3  1.8 K3=1.25 K3=1.25 616.07 616.07
G4  1.8 K4=1.99 K4=1.99 2463.1 2463.04
G5  1.8 K5=1.99 K=1.99 891.65 891.65
G6 1.8 K6=1.95 K6=1.97 1590.3 1592.6

8

Fixed 
bidding 
constant 
of  the 
supplier

Profitable  Bidding 
constant

Profit ($/hr)

CPSO CPSO-
SQP

CPSO CPSO-
SQP

G1 K2 = 1.8 K1= 2.0 K1= 2.1 10,575 10,590
G2 K1 = 1.8 K2= 1.86 K2=1.86 12,652 12,652



Table.4 Results of the IEEE 30 bus systems for 
the producer surplus maximization

Maximization of Social Welfare Function: -
The procedure to obtain the maximum social 

welfare function is similar to 3-bus test system. For 
this  test  system,  the  results  of  three  cases  are 
discussed  and  it  is  given  in  Table  5.  The  CPSO 
parameters are adjusted with respect to the constraint 
to  get  the  optimal  solution.  The  results  obtained 
from integrated  CPSO-SQP method  is  superior  to 
the  results  obtained  from  CPSO  method.  The 
convergence  comparison  of  results  with  out 
considering losses and with loss allocation is given 
in Fig 5. 

Fig.5. Convergence characteristics with losses and with 
loss allocation

The results of all the three cases with the quantity 
and  the  profit  of  all  the  entities  are  tabulated  in 
Table 5. 
 
Table.5 Results of the IEEE 30 bus systems for the social 

welfare maximization (CPSO – SQP)
List  of 
Gener
ators 
and 
Loads 

With  out 
considering loses

With  loss 
allocation

Loss  allocation 
with  transmission 
limits

SWF  = 
800.065$/Mwhr

SWF  =  711.289 
$/MWh

SWF  = 
668.7058$/Mwh

Quantity
(MW)

Profit
($/h)

Quantity
(MW)

Profit
($/h)

Quantity
(MW)

Profit
($/h)

P1 108.45 580.50 91.270 602.82 76.322 506.34

P2 68.067 741.17 117.09 1243.5 132.33 1321.3

P3 88.740 214.96 130.38 0 127.01 0

P4 129.06 2061.5 80.310 1402.7 94.038 1601.7

P5 119.02           0 63.575 339.76 80.926 298.33

P6 41.173 481.65 116.47 1292.9 71.308 836.77

L1 7.514 -123.17 36.437 834.66 19.738 9.3282

L2 11.953 -118.92 16.705 -67.988 36.478 847.40

L3 27.841 342.49 44.770 1509.4 36.205 827.97

L4 24.077 172.03 33.968 667.01 13.083 -117.28

L5 21.553 78.598 41.330 1210.8 27.873 326.31

L6 9.551 -128.20 32.112 551.02 29.249 397.01

L7 41.819 1289.5 37.075 880.38 25.253 205.17

L8 27.325 316.93 28.061 328.10 33.510 646.65

L9 29.261 416.36 40.124 1112.7 24.967 193.03

L10 36.700 886.74 44.862 1517.7 13.394 -114.09

L11 17.007 -46.513 29.192 386.17 11.366 -129.97

L12 29.644 437.15 21.352 52.497 18.095 -33.247

L13 22.980 129.33 20.072 13.448 39.64 1084.3

L14 31.763 559.04 27.306 291.19 38.031 961.02

L15 34.649 743.23 4.398 -96.227 38.706 1012.1

L16 35.645 811.60 41.719 1243.1 39.899 1105.5

L17 31.397 537.16 26.267 242.83 20.273 24.745

L18 25.908 250.33 2.554 -62.875 38.724 1013.8

L19 39.296 1083.1 10.291 131.12 21.860 75.085

L20 32.640 612.83 11.753 -131.00 12.999 -118.00

L21 15.931 -67.861 24.499 166.96 7.5059 -127.91

The value of social welfare function is 800.0654 
$/MWh, if the losses are not considered. When the 
losses  are  considered  and  it  is  allocated  equally 
among all the entities (Pro – rata method) then the 
value of welfare function is decreased to 711.2896 
$/MWh. This value is further reduced to 668.7058 
$/MWh when we include the transmission line limits 
in to the problem.

C. Computation Analysis of proposed Algorithm
 The  efficiency  of  the  proposed  algorithm  is 

checked  with  various  test  cases.  Using  canonical 
PSO (CPSO) and CPSO integrated with SQP does 
the simulation of test cases. The analysis is carried 
out  with  respect  to  computational  time  and  the 
capability of the algorithm to tackle the variations in 
parameters.  By  comparing  the  various  test  case 
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Quantity (MW) Profit($/hr)
CPSO CPSO-

SQP
CPSO CPSO-SQP

G1 400.4325 400.4495 0 0
G2 343.9042 344.8045 1262.982 1263.6740
L1 616.2451 616.6551 21411.931 21412.731
L2 128.1213 128.5989 2569.9707 2570.8206



results, it is found that CPSO take lesser iterations to 
give the optimal solution compare to General PSO 
(GPSO).  The  results  are  improved  after 
incorporating SQP as a local optimizer. Initially the 
SQP subroutine is used at the end of the CPSO, i.e., 
the final results obtained by using CPSO are taken as 
initial values for the SQP. The results are improved 
further by   integrating SQP with PSO in such a way 
that, it will search for the better solution whenever 
the value of bestG  is replaced. This will explore the 
solution  space  effectively  to  obtain  the  global 
optimal solution.  CPSO integrated with SQP gives 
very  good  results  with  little  more  computational 
time than other methods. It will effectively take up 
the  variations  in  the  input  parameters  than  other 
methods.

6. Conclusion
     The  proposed  CPSO-SQP method  is  simple, 
reliable  and  gives  accurate  results  with  in  the 
reasonable  computation  time.  The  CPSO  with 
constriction  factor  explores  the  solution  space  to 
obtain  near  global  solution.  The  application  of 
scaling  factor  for  inertia  constant  ensures  the 
convergence of the solution. SQP is used to fine tune 
the  solution  obtained  from  CPSO.  The  proposed 
algorithm  is  tested  with  two test  systems  and  the 
results  are  tabulated.  Three  various  conditions  are 
considered  to  find  the  maximum  value  of  social 
welfare function. In the first case the losses are not 
considered,  in  the  second  case  the  losses  are 
considered and allocated equally to all the entities. 
In the third case the line limits are considered. The 
variation of social welfare function for all the cases 
is analyzed by using the proposed algorithm.
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