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Abstract – Chatter free sliding mode like synergetic 

control relying on continuous control law is presented 

in its basic approach applied to an induction motor as 

well as  two finite control approaches: terminal syner-

getic and nonsingular terminal synergetic control. The-

se last approaches exhibit robustness and finite time 

convergence without the chattering inherent to sliding 

mode control a well-known similar robust technique. 

Stability is guaranteed trough Lyapounov synthesis 

method while simulations results show satisfactory 

transient and steady-state performances.  
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I. INTRODUCTION 

 

Sliding mode control is widely used in the field of induc-

tion motor drive control [1-2]. However, it relies on a dis-

continuous control action causing the occurrence of a chat-

tering phenomenon when implementation is carried out. 

One common way to eliminate this drawback is to intro-

duce a boundary layer neighbouring the sliding surface [3-

7] this method can lead to stable closed loop system while 

avoiding the chattering problem, but there exists a finite 

steady state error due to finite gain in steady state without 

switching control action.   

Synergetic control like sliding mode is based on the basic 

idea that if we could force a system to a desired manifold 

with designer chosen dynamics using continuous control 

law, we should achieve similar performance as SMC with-

out its main inconvenient: chattering phenomenon. To 

achieve this goal one has to choose a pertinent macro-

variable first and then elaborate a manifold which enables 

the desired performance to be reached. Macro-variables 

can be a function of two or more system state variables 

[8]. Although similarities with sliding mode technique 

include system order reduction and decoupling, its chatter 

free operation makes it a sound and motivating approach 

easily implementable. 
Although the parameters of a linear sliding surface can be 

adjusted appropriately to obtain the arbitrary convergence 

rate, the system states cannot reach the equilibrium point 

in finite time [9]. To overcome this drawback, terminal 

sliding-mode control (TSMC) with nonlinear terminal 

sliding surface has been recently proposed based on the 

concept of a terminal attractor [9-10]. Compared with the 

conventional SMC with linear sliding surface, TSMC of-

fers some superior properties such as faster, finite time 

convergence, and higher control precision [9]. However, 

there are two disadvantages of TSMC which are the singu-

larity problem and the requirement of the bound of the 

uncertainty.  

Among many advantages provided by the sliding mode 

methodology such as robustness to perturbations and un-

certainties to a great extent when the so called matching 

conditions are met,[11-14] one can find finite time con-

vergence as suggested by a nonlinear sliding hyper plan 

[14] nevertheless chattering remains a main drawback in 

physical applications. These improvements [14] have sug-

gested the present work based solely on the synergetic 

approach [15-17] similar to SMC but without a discontin-

uous term in the control law. 

 

II. SYNERGETIC CONTROL BASICS 

 

Not requiring model linearization, synergetic control uses 

full nonlinear model and a macro-variable in the synthesis 

of a continuous control law [15-17]. 

We briefly introduce the basics of synergetic con-

trol synthesis for an n-order nonlinear dynamic system 

described by (1): 

 

( )
( , , )

dx t
f x u t

dt
                                           (1)  

 

In which x represents the system state space vector and u 

its control. Although it could be easily extendable to multi-

variable system, we will consider in this paper a single 

input single output case for simplicity. Control synthesis 

begins by a suitable choice of pertinent macro-variable 

function of two or more state variables given by (2): 

 

 ( , ) x t                                      (2)                                       

 

Where    and  ( , )x t  designate designer chosen macro-

variable and a corresponding  state variables and time de-

pendent function. Next a desirable manifold (3) is chosen 
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on which the system will be forced to remain even in pres-

ence of unwanted disturbances or parameters fluctuations 

just as on a sliding mode surface.  

 

0                                                 (3)                                                    

 

A large choice is available to the designer in selecting the 

macro-variable features accordingly with the control ob-

jectives and practical physical constraints.        

The macro-variable, which may be a simple linear combi-

nation, is forced to evolve accordingly to designer im-

posed constraint of the general following form: 

 

0 T   ,      0T                               (4)                     
 

 

Control parameter T dictates convergence rate towards the 

selected manifold given by (3).    

The appropriate control law is obtained using straightfor-

ward mathematical following steps: 

 

( , ) ( , )
.

d x t d x t dx

dt dx dt

 
                                   (5)                               

   

Using (1) and (2) in (4) leads to (6): 

 

( , )
( , , ) ( , ) 0 

d x t
T f x u t x t

dx


                           (6)              

 

Resolving (6) for u gives the control law as: 

 

( , ( , ), , )u g x x t T t                                      (7)                               
 

   

 As can be seen, control law u depends not only on sys-

tem variables but on parameter T and macro-variable  as 

well, giving the designer latitude to choose controller fea-

tures acting upon the full non linearized system model. 

An appropriate designer choice of the macro-variables 

and judicious manifolds lead to closed-loop system global 

stability and invariance to parameter fluctuation [18] for 

when the system reaches the pre-specified manifold it re-

mains on it.  

 

III. MODEL OF THE INDUCTION MOTOR 

 

The induction motor implemented in this paper is a 

three phase star-connected four-pole 600W, 60Hz, 

120Volt/5Amp.type. The mechanical equation of induction 

servomotor drive can be written as [19]. 

 

EL TTBJ                                (8) 

 

Where J is the moment of inertia, B is the damping coef-

ficient, TE represents the electric torque and TL denotes the 

external load disturbance. By using the implementation of 

field-oriented control [23], the electric torque can be writ-

ten as 

 

*

qsTE iKT       and    
*

2

.
2

3
ds

r

mp

T i
L

LN
K              (9) 

 

Where KT is the electric torque constant,
*

qsi  is the torque 

current command, 
*

dsi   is the flux current command, Np is 

the number of pole pairs, Lm is the magnetizing inductance 

per phase and Lr is  the rotor inductance per phase. Then 

the description of the dynamic structure of the control in-

duction motor can be represented in the following form.  

 

 
L

qs
T

TiKB
J


*1

                             (10) 

 

Where  the rotor angle of the induction motor and   is 

the motor angular velocity. 

 

Define 1x be the rotor angle of the induction motor 

and 2x  be the motor angular velocity. The dynamic 

system equation (10) can be rewritten as follows: 

 









cdbuaxx

xx

22

21




                                (11) 

 

Where JBa  , JKb T , Jc 1 , LTd  and 

*

qsiu   is the control command.  

The control objective is to design a control law so that the 

rotor position tracks a desired trajectory. 

 

IV. SYNERGETIC CONTROL OF INDUCTION MOTOR 

 

The first step is the choice of a suitable macro-variable. 

In general the macro-variable could be any function of the 

system state variables. For the present time we will limit 

our investigation to a macro-variable that is a linear func-

tion of the induction motor state variables, previously de-

fined, having the following form: 

 

2211 xkxk                                           (12) 

 

 Substituting   from (12) into (4) yields 

 

011221122 )(  xkxkxkxkT                      (13) 

 

Now, substituting the derivatives )(1 tx and )(2 tx from (11) 

and solving for control u, the following control law is ob-

tained: 
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            (14) 

 

Control law (14) forces the state variable trajectory to sat-

isfy (4). According to this equation, the trajectory con-

verges to manifold 0 with a time constant T and then 

stays on the manifold 0 at all times. So, from this 

point on the state trajectory satisfies 

 

02211  xkxk                                    (15) 

 

V. TERMINAL SYNERGETIC CONTROL OF AN               

INDUCTION MOTOR 

 

Similar to synergetic control, terminal synergetic control 

requires the definition of a nonlinear special macro-

variable variable coined terminal macro-variable which 

may be of the following form: 

 

p

q

xx 12                                    (16) 

 

   where  pq and are odd positive constants satisfying the 

following condition qp    and  0 .  

Substituting   from (16) into (4) yields 
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q

p

q
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Now, substituting  derivatives )(1 tx and )(2 tx from (11) 

and solving for  u, the following control law is obtained: 

 

1
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This control law will ensure finite time convergence. The 

attractor   0  will be reached in finite time  rtt  . 

When  0 is reached system dynamics are strictly de-

termined  by equation (19): 

 

2 1 1 1 0

q q

p p
x x x x                         (19) 

 

Convergence time is calculated from  0)(1 rtx   to 

0)(1  rs ttx    and is given by (20) as: 
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Thus system  tracking error converges in a finite time  

while as can be seen in (18) the term  
2

1

1 xp

q

x


may  cause 

a singularity problem when 
1 20, 0x  and x    

Theoretically if  0 is achieved  one has : p

q

xx 12   

therefore with   qpq 2 and  21  pq , term 

2
1

1 xx p

q


 is equivalent to  p

pq

x
)2(

1



 which is nonsingular. 

But in reality a singularity can easily occur when control is 

insufficient to insure that 02 x  while 01 x . 

Furthermore uncertainties and modeling errors can 

cause singularity problems even if manifold 0  is 

reached and particularly near the equilibrium point   

01 x , 02 x .  

The singularity issue is addressed in the following sec-

tion. 

 

VI. NONSINGULAR TERMINAL SYNERGETIC CONTROL OF 

INDUCTION MOTOR 

 

Define the nonsingular terminal macro-variable as fol-

lows: 

q

p

xx 21

1


                        (21) 

 

Substituting   from (21) into (4) yields 
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Now, substituting derivatives )(1 tx and )(2 tx from (11) and 

solving for control u, the following control law is ob-

tained: 
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It is obvious that the fourth term of the Nonsingular termi-

nal synergetic control law u shown in (23) will not result 

in the negative power as long as the condition   

qpq 2 holds. Therefore, the singularity problem is 

solved completely in the nonsingular terminal synergetic 

control. 

 Moreover, one can observe (21) that when 0   the 

system dynamic p

q

xx 12      is equivalent to terminal 



 

synergetic control. Therefore, the finite time st  taken to 

reach the equilibrium point 01 x , 02 x  of  the 

nonsingular terminal synergetic control system is the same 

as the one of the  terminal synergetic control system as 

indicated by (20). 

 

VII. SIMULATION RESULTS 

 

In this section, we apply our proposed adaptive control-

ler for induction motor position servo drive. The parame-

ters of induction motor are [23]: 
23

1078.4 sNmJ


 , 

radNmsB
3

1034.5


  

ANmKT 4851.0 , NmTL 5.0 . 

 

The goal is to let the rotor angle track a sine wave tra-

jectory )sin(tx dd    while an  external load disturb-

ance TL is applied  at t=10sec.  

 

 

For synergetic control  

 

Let’s start by choosing the following synergetic macro-

variable  

2211 xkxk  Where 1
2

,41  kk  and the control 

parameter  01.0T  

 

 

 

 

 

For terminal synergetic control  

 

A suitable terminal macro-variable may be chosen as : 

p

q

xx 12   , where 12 , 846.0
p

q
 with control 

parameter T set to  01.0T  

 

 

 

For nonsingular terminal synergetic control  

 

A nonsingular terminal macro-variable is defined as: 

q

p

xx 21

1


  , where 5  , 846.0

p

q
 with  

01.0T  

 

 

Initial condition  Tx 0,60/)0(  and step size 0.01s.    

 

 

 

 

 

 

 

A. Synergetic control response 

 

 
 

 

 
 

 

Fig.1   Results for synergetic control of an induction motor 

perturbed with load torque (0.5N.m, t=10sec.) 



 

 

B. Terminal synergetic control simulation results 

 

 
 

 

 
 

Fig. 2 Results for terminal synergetic control of an induc-

tion motor perturbed with a load torque (0.5N.m, t=10sec). 

 

 

 

C. Nonsingular terminal synergetic control results 

 

 

 

 

 
 

Fig.3 Simulation results for nonsingular terminal synerget-

ic control of an induction motor perturbed with a load 

torque (0.5N.m, t=10sec.) 

 

 



 

In all three simulation results good tracking can be easily 

observed with an important and perceptible reduction in 

tracking error in both terminal approaches over the basic 

synergetic technique. A residual small steady-state error 

remains which could be eliminated by the introduction of a 

PI term or by the so called fast terminal synergetic control 

which constitutes ongoing work. 

VIII. CONCLUSION 

A three robust synergetic control approaches have 

been presented in this paper. Synergetic control is a robust 

control technique and has been used in a simulation study 

on an induction motor subjected to a load perturbation. 

Results show good tracking performance with an im-

portant performance improvement in the finite time termi-

nal and nonsingular terminal methodologies. Work under-

way will address via the fast terminal synergetic further 

improvement in eliminating steady state errors.  

.  
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