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Abstract: 

In this work an Interconnection-and-Damping Assignment Passivity-

based control (IDA-PBC) for a full-bridge rectifier is investigated. The controller 

design takes advantage of the generalized state space averaging (GSSA) 

modeling technique to convert the quoted nonstandard problem (in actual 

variables) into a standard regulation one (in GSSA variables). The transient 

behavior of the system, along with the controller is obtained through computer 

simulation. The closed-loop system performance fulfils unity power factor in the 

AC mains and output DC voltage regulation. In particular, the technique is 

shown to be effective and robust  with respect to load variations.  

Key terms: Passivity Based Control, Generalized State Space Averaging 

(GSSA), AC-DC power converter. 

 

1. INTRODUCTION 

 

 In recent years, single-phase switch-mode AC/DC power 

converters have been increasingly used in the industrial, commercial, residential, 

aerospace, and military environment. To get constant output voltage and near 

unity power factor, it is essential that the converter has to be controlled [1]. In 

recent power electronic researches, high power density, high power factor, high 

efficiency, low current distortion, and simple control scheme are strongly 

recommended for the industrial applications [2]. This is due to the enforcement 

of strict harmonic regulations such as IEC 1000-3-2. Voltage source converters 

provide excellent control over power flow in both directions. They can be 

operated as AC–DC converters to generate regulated DC voltage at high input 



power factor. The power flow can easily be reversed to operate the converter as a 

DC–AC converter [3]. This capability makes the system ideally suited to electric 

drives and line interactive UPS applications. Conventional diode rectifiers or 

phase-controlled rectifiers have properties of simple structure and low cost. 

However, they have the inherent drawbacks that the power factor decreases when 

the firing angle increases and the line current harmonics are relatively high. To 

overcome the above problems, several circuit topologies of the single-phase 

switching mode rectifier (SMR) with low current distortion and unity power 

factor have been proposed in the past few years [4]. These circuit configurations 

are based on the full bridge diode rectifier followed by a boost, buck boost, or 

cuk converter. Single-phase full bridge and half bridge SMR circuit 

configurations have capabilities of bidirectional power flow, reactive power 

control, and high power factor. 

 Among these circuit topologies, single-phase unidirectional AC/DC 

converters with boost topology have been widely used as front-end power factor 

pre-regulator due to its good performance characteristics. The boost topology has 

properties of high power factor, low current distortion, step-up voltage ratio and 

continuous input current. Boost rectifier topologies can be broadly classified as 

continuous mode and discontinuous mode conduction rectifiers [5]. The single-

phase two-level PWM continuous current mode rectifier with unidirectional 

power flow is presented here.  

 The generalized state-space averaging method is a way to model the 

power converters as time independent systems, defined by unified set of 

differential equations, capable of representing circuit waveforms without 

discontinuities [6]. Consequently, this approach is not suitable for modeling 

converters which have dominant oscillatory behavior such as the resonant type 

converters or large ripple PWM converters [7]. Therefore, analysis of AC/DC 

power converters with ideal switches and parasitic components (capacitors of 

inductors) forming loops must be considered with more care. With the 

generalized state-space averaging method, the circuit state variables are 

approximated by a Fourier series expansion with time-dependent coefficients [8]. 

This representation results in an unified time-invariant set of differential 



equations where the state variables are the coefficients of the corresponding 

Fourier series of the circuit variables.  

 The paper is organized as follows. Section 2 studies the dynamics of a 

single-phase full-bridge boost converter circuit and develops a state space model. 

In section 3, the converter model is analyzed in the frame of  Port-Controlled 

Hamiltonian System (PCHS) form.  Section 4 presents the controller design 

based on IDA-PB control technique. The simulation results are shown in section 

5 for the robustness and effectiveness of the technique employed. Finally some 

concluding remarks are drawn.  

 

2. PROPOSED BOOST RECTIFIER 

 

 

  

 

  

 

 

 

 

Figure 1 Single phase Full-bridge Boost Rectifier 

 

 Figure 1 shows the single phase full-bridge boost rectifier. The transistor 

works as a switch, which is turned on and off by the PWM control signal.   

 

2.1  State Space Modeling: 

 

The system behaviour is obtained by solving the modelling equations. 

Mathematical modelling also decides the details of the system that can possibly 

be studied by computer simulation.  The starting point for modelling a converter, 

however, is by application of Kirchoff’s and Ohm’s law to the circuit, which 

provides first-order differential equations describing the state of current through 

inductor(s) and voltage across capacitor(s).  

  

The following equations describe the dynamical behaviour of the full-

bridge boost type rectifier in Figure 1. 
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where )(tφ  is the magnetic flux through inductor, )(tq  is the electrical charge in 

capacitor , r is a resistance modelling the parasitic resistive effect of the inductor 

and the switches, u(t) describes the position of the switches taking values in the 

discrete set , )(til  is the load current, and )(tVi =E sin(ωot) is the AC voltage 

source of amplitude and angular frequency ωo=2πf, f being the frequency in 

Hertz. 

 In this section, and for GSSA modelling purposes, the load will be 

assumed resistive, then )(til = )(tq /RC. 

A useful variable transformation, which simplifies (2.1), forthcoming 

developments, is obtained through v(t)= -u(t)q(t) and z = [z1  z2] = [ )(tφ , (1/ 

2)q(t)
2
] . The system in the new variables is, 
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The energy in the storing elements and of this system can be described by, 
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And (2.2) & (2.3) can be rewritten as 

 

      







+

∂

∂








−

∂

∂









−
=

















020

0

0

0

)(

)(

22

1

iT

l

T
v

z

H

zCi

r

z

H

v

v

dt

tdz
dt

tdz

  (2.5) 

This corresponds to a PCHS system of the form, 
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Where JT = -JT 
T
, R(x) = R

T
(x) ≥ 0 are the matrices describing the interconnection 

structure and damping, respectively. The last inequality results from and because 



the load voltage is non negative. The input voltage is considered as an external 

disturbance modelled by vector. In order to obtain the simplest coherent GSSA 

model, let us determine the harmonic content of the states and the input in steady 

state. 

 

2.3  Steady State Analysis 

 

 To this end, let  )sin()( 0

*

1 tLItz d ω=  be the desired dynamics and )(til  

be the load current assuming a resistive load. In order to obtain the steady-state 

zero dynamics, let us take into account this assumption in (2.5) – (2.6) and let us 

solve for v and z2. The steady-state response yields, 
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The value of parameter Id can be obtained through power balance. 
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 The minus sign has been chosen since it yields a stable equilibrium point 

with lower power consumption.  The total stored energy in steady-state results in, 

     )2sin()( 0 HHHT ttH θωβα ++=        (2.10) 
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Expressions (2.1), (2.7), and (2.8) show that a suitable GSSA model of 

the system, useful for controller design purposes, should contemplate the first 

harmonic Fourier components for z1(t), the zero and second harmonic Fourier 

components for z2(t) and the first harmonic Fourier components for v(t). As for 

the Hamiltonian HT(t), from (2.10), the DC component and second harmonic 

should be considered. If, in addition, C is chosen to obtain a low voltage ripple in 

the capacitor, then 2zβ and Hβ are negligible with respect to 2zα  and Hα , 

respectively. Hence, the second harmonic Fourier components of  z2(t) and HT(t) 

will not be considered from now on. 

 

3. FULL BRIDGE RECTIFIER AS A PCH SYSTEM IN GSSA         

VARIABLES 

 

Although the most general GSSA model of a system has infinite 

dimension, the harmonic contents of signals in steady state can be used to find 

accurately enough finite dimensional GSSA models. To this aim, using (2.3) and 

taking into account the Fourier components we have considered as relevant, the 

bilinear product v(t)z1(t) in (2.3) can be approximated as, 
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As it has been assumed q (t) has predominantly DC harmonic 

components, the complex coefficients of order one in (3.1) will be discarded. 

Hence, using (3.1) and (3.2), the GSSA model of the system defined by (2.3) 

becomes, 
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Let, x = [
02z , 

IR
zz

1111 , ] be the state and u = [
IR

vv
1111 , ] control vectors, 
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be the desired equilibrium. 

The original control problem has become a regulation problem in the 

GSSA domain. For simplicity, let us denote the load current DC component by  

I0 = 01i . Then, the system in (3.3) can be written as the PCH system: 
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Or in a more compact form, 

 

        [ ] g
dx

H
xRuJx +

∂
−= )()(

.

       (3.6)            

 

where, J(u) and R(x) are the interconnection-and-damping matrices, respectively, 

and g vector models an external disturbance. Note that H(x) is the DC 

component of the Hamiltonian in HT(z)in (2.10);  i.e.,      
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The GSSA system in (3.6) preserves the PCH structure of the system in 

(3.6), with the remarkable advantage of a regulation control objective. This 

allows the IDA passivity based design approach to be methodically used. In this 

line, an IDA-PB control fulfilling system specifications is designed in the next 

section. The control law depends on the output voltage DC component and 

requires measuring the dc output current to guarantee robustness with respect to 

load variations. 

 

 

4. CONTROLLER DESIGN 

 

The final objective of the IDA-PBC approach [8] is to design a feedback 

control u = ß(x), such that the closed-loop dynamics is the PCH reference 

system. 
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where, Jd(x) = - Jd
T
(x) and Jd(x) = Rd

T
(x) ≥ 0  are targeted interconnection-and-

damping matrices, and the new energy function  Hd(x) = H(x) + Ha(x)  has a 

strict local minimum at the desired equilibrium. 

 

4.1 Conditions for Stable Equilibrium: 

 

Following [8], we proceed in the standard manner. 

 

(i) Structure preservation.   

Given Jd(x) and Rd(x), let Ja(x) and Ra(x) be defined by, 

Jd(x) =  J(x, β (x)) + Ja(x) = [J(x, β (x)) + Ja(x)]T 

Rd(x) = R(x) + Ra(x)  =  [R(x) + Ra(x)]
T
 

Then, the desired dynamics is achieved if it is possible to find functions 

β (x) and k(x):=  xxH a ∂∂ /)(  satisfying, 

[J(x, β (x)) + Ja(x) - (R(x) + Ra(x))] k(x) = - [ Ja(x) -  Ra(x)] xxH a ∂∂ /)(  + g. 

 



(ii) Integrability. 

K(x) is the gradient of a scalar function.  
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(iii) Equilibrium condition. 
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If conditions (i) – (iii) hold, then x
*
 is a (locally) stable equilibrium point 

of the closed-loop system. 

Let us particularise the aforementioned procedure for the full bridge 

boost rectifier controller defining Jd(x) = J(x, β (x)) and Rd(x) = R(x), 

i.e., Ja(x) = 0 and.Ra(x) = 0 

 

4.2 Structure Preservation  

 

Equation (1) yields, 
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4.3.  Integrability 

Replacing (4.4) in (4.1) and taking into account that k(x) = xxH a ∂∂ /)( , 

the following partial differential equation is obtained:                   
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As we are interested in control inputs u1, u2 , which only depend on the 

output voltage dc component, we take  k2 = k2(x1)  and  k3 = k3(x1) . Then, by the 

Integrability condition ,   
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for i = 2, 3 and k2 = a2 and k3 = a3 are indeed constant. Thus, the PDE is actually 

an ODE on, whose solution is given by, 
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4.4  Equilibrium Assignment 

 

From (4.3) and the definition of Ha , the following conditions on a2, a3 

and Id so that x
*
, from (4.2), is a singular point of Hd are derived 
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a2 = 0 and  a3 – Id = 0. 

 

This equations system has two solutions, 
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Then, taking the latter solution, k1 and the control inputs derived in (4.3) are, 
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Where, V0 denotes the output voltage DC component 

000100 2 vCqxandv ==  

5. SIMULATION RESULTS 

 The power converter behaviour is simulated using Matlab and Simulink. 

The following parameters are used for performance analysis of the converter. L = 

2mH, C = 1000µF, Load Resistance = 150Ω, V in = 120V, Desired Output DC 

Voltage = 200 V. Frequency = 50 Hz.  

 

 

 

 

 

 

 

 

 

 

Figure 2 The Structure of the IDA-PB control approach 

Figure-2 shows the closed-loop structure of the IDA-PBA control approach. The 

actual rectifier is shown at the top of the figure with pulses as the input signal 

and the couple i1(t) and v0(t) as the output measured variables. The input voltage 

vi(t) is sensed for being used as the input in the controller and the Inverse 

Discrete Fourier Transform (IDFT) blocks. The Recursive Discrete Fourier 

Transform (RDFT) allows the right Fourier Coefficients to be obtained at 

sampling intervals. The controller block computes the suitable averaged Fourier 

components for the control signal u(t) while the IDFT is performed in the IDFT 

block to obtain the discrete v(kT) control signal.  
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5.1 Response of uncontrolled and controlled bridge Rectifier  
                      

 
Figure 3.  Response of the uncontrolled rectifier 

 

 
 

 

Figure 4. Open Loop Response of controlled bridge rectifier 

 

As seen from the figure 3and 4, the voltage output of the rectifier is less 

than the desired voltage and also the line current is not exhibiting the sinusoidal 

waveform. These drawbacks are overcome in the model proposed in this work. 



 
            Figure 5 Responses for output voltage and line current 

 

The responses for output voltage and line current waveform in front of 

load changes are shown in figure 5.  

 

5.2 Responses of Rectifier with Controller Simulink model 
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  Figure 6.  Simulink model of the proposed control scheme. 

 

 Figure 6 exhibits the simulink model of the proposed control scheme. 

Subsequently, figures 7 show the responses of the system in front of load 

variation. Figure 8 shows the power factor correction performance for the case of 

nonlinear load which mean value changes from 50 Ω to 500 Ω. 



             

 
Figure 7 Unity power factor and voltage regulation responses 

 
Figure 8 Responses for Vs, Is and Vo which exhibit robustness under load    

    parameter variations (50 Ω to 500 Ω) 

 

 The desired regulated DC output voltage and the power factor is V0 = 

200V and near unity respectively. It is important to note that the power losses 

due to IGBT switches has been taken into account. The system performance 

could be improved by replacing these IGBT switches with low power ones.  

 

5.3  Comparative discussions of the results 

           

         As seen from the figure 2 the line current of ordinary uncontrolled bridge 

rectifier is not sinusoidal, also there is no boost up of output voltage. However 

system itself is not robust and also the system power factor is also not unity 

(figure 3). But from figure 7, it’s seen that using the proposed bridge rectifier 

model it’s possible to get a sinusoidal line current and also boost up of output 



voltage can also be done. From the figure 7, it’s seen that by incorporating the 

controller it’s possible to obtain robustness with respect to load variations and 

also it’s possible to obtain a near unity power factor, figure 8.  Initially, the DC 

bus voltage rests at the diode rectifier level with a resistive load of R = 60 Ω. 

Then the control action is applied keeping the load resistance and the output 

voltage increases to the desired DC value. Afterwards two load changes from 50 

Ω to 500 Ω were applied and the shape of the DC bus output voltage shows 

ensures the robustness of the controlled system with respect to load variations. 

 

6. CONCLUSION 

 

The performance analysis of single phase full bridge boost-type rectifier 

is analyzed for regulated output voltage and unity power factor at the AC mains. 

In the case considered here, a nonstandard tracking control problem for a full-

bridge boost rectifier results in a regulation one because of GSSA expansion for 

phasor coefficients. An IDA-PB control has been designed measuring the load 

current and the load voltage, and presuming the input voltage is known. The 

closed-loop system is robust to load variations achieving unity power factor in 

the ac mains and load voltage Regulation.  
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