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Abstract: In this paper, various power decompositions 

and theories are reviewed in view of load compensation. 
These are necessary to evaluate the efficiency and 
performance of the transmission, distribution systems and 
various electrical equipments. In order to compensate the 
load, it is required to know which components of the load 
power or current have to be compensated. Under balanced 
and sinusoidal conditions, the power definitions and 
decompositions are well defined and are being in the 
practice. But, in the case of non-ideal, there is no common 
agreement till now about the decompositions of power and 
current. Hence, the power decompositions and theories for 
the load compensation under non-ideal conditions have 
become an important research area. This paper focuses on 
reviewing the current literature about the different power 
decompositions and abstract ideas for load compensation in 
non-ideal conditions. 
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1. Introduction 
 

Because of the proliferation of nonlinear and power 
electronic loads in the distribution system, the voltage 
and currents are significantly distorted. With the 
uneven distribution of loads on three phases, these 
quantities are having unbalance in addition to the 
nonsinusoidal nature. Hence, the existing power 
definitions for single phase and three phases in ideal 
conditions are not valid under unbalanced and 
nonsinusoidal situations. Many researchers working on 
quantifying the definitions for active, reactive, apparent 
powers and power factor under these conditions. Till 
now, there is no common agreement on the definitions 
for the power components and the power factor. For a 
single-phase and sinusoidal system shown in Fig. 1, the 
powers are defined as given below in the frequency and 
time domain. Let us consider the supply voltage and 

current in the frequency domain as 0V V °= ∠  and 

I I φ= ∠ − . The complex power (or) apparent power is 

defined as 
*

  cos sinS = V I V I jV Iφ φ= + .                (1) 

Now, the active power ( P ) and reactive power ( Q ) are 

defined as the real and imaginary parts of the complex 
power respectively. 

cosP V I φ=  and sinQ V I φ= .               (2) 
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Fig. 1.  Single phase system with ideal supply and linear load 

The same can be verified in the time domain. The 
considered supply voltage and current for this case are 
given below. 

sin ( )    and     sin ( )m mv V t i I tω ω φ= = −  

The instantaneous power is defined as the product of 
instantaneous voltage and current. 

( ) sin ( ) sin ( )m mp t v i V I t tω ω φ= = −  

[ ]= 1 cos 2  sin 2P t Q tω ω− −                (3) 

There are two parts in the instantaneous power. The 
average of the first part is named as the active power 
and it is similar to the active power defined in the 
frequency domain. The average of the second part is 
zero and it is not giving any information about the 
presence of reactive power in the system. Hence, the 
reactive power is defined as the peak value of the 
second term in (3), i.e. sinQ V I φ= . The apparent 

power defined in frequency domain as 2 2
S P Q= + . 

Though, this definition is accepted and practicing, 
there is an ambiguity over addition of two dissimilar 
quantities (average, peak) to get another quantity. In 
time domain, the apparent power is defined as S V I= . 

The apparent power definition in frequency domain 
and time domain are converging to same result under 
sinusoidal condition, where as this is not true under 
nonsinusoidal conditions. Hence, the apparent power 

definition 2 2
S P Q= + in the frequency domain is not 

valid under nonsinusoidal conditions. 



 

  

Let us consider the three-phase balanced sinusoidal 
system as shown in Fig. 2. In the frequency domain, 
the voltage and current quantities are represented as 
given below. 

0      120       120

   120   120   

a b c

a b c

V V V V V V

I I I I I Iφ φ φ

° ° °

° °

= ∠ = ∠ − = ∠ 


= ∠ − = ∠ − − = ∠ − + 
(4) 

Z

Z

Z

N

'

n

av

bv

cv

ai

bi

ci

oi

Fig. 2.  Three-phase system with ideal supply and linear load 
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Here, the three-phase active power is defined as 

3 3 cosP V Iφ φ=  and the reactive power is designated as 

3 3 sinQ V Iφ φ= . Now, let us consider the three-phase 

voltages and currents in time domain as given below. 

2 sin ,   2 sin( 120 ),    2 sin( 120 )

2 sin( ),   2 sin( 120 ),   2 sin( 120 )

a b c

a b c

v V t v V t v V t

i I t i I t i I t

ω ω ω

ω φ ω φ ω φ

° °

° °

= = − = +

= − = − − = − +
(6) 

The instantaneous three-phase power is defined as 
below. 

3 3 cosa a b b c cp v i v i v i V Iφ φ= + + =    (7) 

In three-phase balanced sinusoidal system, the 
instantaneous power turns out to be three times the 
active power in the single-phase system. There is no 
oscillating component and also there is no reactive 
power component even though the load has inductive 
nature. Hence, in order to quantify the effect of reactive 
nature of the load, the reactive power is defined as the 
three times the reactive power defined in single phase 
sinusoidal system i.e. 3 sinQ V I φ=  and it is satisfying 

the frequency domain apparent power, i.e 
2 2

3S P Q V I= + = . In time domain, the arithmetic 

apparent power is defined as given below. 

a a b b c cS V I V I V I= + + .                 (8) 

The three-phase system is balanced and sinusoidal, 
hence the rms values in each phase are equal and hence 
apparent power is simplified as given in the following 

equation. 

= 3S V I V I V I V I= + + .                (9) 

2. Power Definitions in nonsinusoidal situations 

There are different power decompositions, theories 
and approaches towards defining them. First 
classification is based on either it is time domain or 
frequency domain, second one is based on the 
decomposition of particular electrical quantity. The 
third one depends on the validation methodology of 
these definitions. Under the last classification, the 
power theory may be either first defined for the ideal 
case and then extends to non-ideal conditions or first 
defined to the non-ideal case and then validating the 
same for the ideal supply conditions. 

The decompositions are classified based on current, 
power and energy. This is illustrated in Fig. 3. Based 
on the lag, lead, linear and non-linear behavior of 
current with respect to voltage, the currents are 
decomposed. Some definitions are formulated based on 
instantaneous or average value of the power. Some 
authors considered energy consumed by the load as the 
basis for the definitions. 
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Fig. 3.  Decompositions based on different electrical quantities 

In above figure, T is the time period of the system 
and t is the time for which the power P is 
consumed. The following subsections present 
some of the important power definitions under 
non-ideal conditions. 

A. Budeanu power decomposition 

Budeanu decomposed apparent power into two 
types. The first one is active power and another one is 
deactive power. Again, the deactive power divided into 
two components as Budeanu’s reactive power and 
Budeanu’s distortion power. The active power is the 
average of the instantaneous power over a cycle [1]. 

0 0

10

1
= ( ) ( ) cos

T N

n n n

n

P v t i t dt V I V I
T

φ
=

= +∑∫              (10) 

where, 0V , 0I  are dc components present in ( )v t  and 

( )i t  respectively. This power (P) is the actual power 

that converted to the physical work. Budeanu’s reactive 

power is defined as 
1

s in
N

B n n n

n

Q V I φ
=

= ∑ . The 



 

distortion power is defined as the following. 

2 2 2
B BD S P Q= − −               (11) 

2 2 2 2 = ( 2 cos( ))n m m n n m n m n m

n m

V I V I V V I I φ φ
≠

+ − −∑  

B. Fryze’s Power Decomposition  

Fryze decomposed the total current into two parts to 
get the power components. The current is decomposed 
into two orthogonal currents named active current and 
reactive current. The active current is the minimum rms 
current required by the load for the given average 
power [2]. The formulation for the active current is 
given below. 

2
( ) ( )

a

P
i t v t

V
=                (12) 

Here P is the average power and V is the rms value of 
voltage. The reactive current is ( ) ( ) ( )r ai t i t i t= − . Then, 

the apparent power is calculated as 2 2 2 2 2 2
a rV I V I V I= + . 

2 2 2
FS P Q= +                (13) 

where, FQ  is the Fryze’s reactive power. The 

Fryze’s active power is not similar to useful 
power. Active power associated with harmonics is 
useful for resistive loads and it is harmful for the 
rotating machines. The harmonic active power is 
converted as heat in the windings, which can 
increase the temperature gradient of the machine.  

C. Shepherd and Zakikhani’s Power Decomposition 

The currents in this decomposition are decomposed 
as given below. 
Active current is defined as  

1

2 2
cosa n n

n n

I I φ
∈

= ∑     (14) 

Reactive current 

1

2 2
sinx n n

n n

I I φ
∈

= ∑              (15) 

Distortion current 2 2 2
d a xI I I I= − −               (16) 

where n1 is defined as the set, which consists of 
common harmonics of voltage and current. 
The apparent power is defined as  

2 2 2 2
a x dS S S S= + +                  (17) 

The Active apparent power 

1 2

2 2

a n a

n n n

S V I
∈ ∪

= ∑  (18) 

Reactive apparent power as 

1 2

2 2

x n x

n n n

S V I
∈ ∪

= ∑  (19) 

Distortion apparent power is defined as given below. 

1 3 2 1 3

2 2 2 2 2

d n n n n n

n n n n n n n n n n

S V I V I I
∈ ∈ ∈ ∈ ∈

 
= + +  

 
∑ ∑ ∑ ∑ ∑  (20) 

Where n2 is the set of frequency components, which 

consists of only voltage harmonics and no current 
harmonics. The set n3 represents the frequency 
components of current and no voltage harmonics [3]. 
However, this decomposition does not provide any 
information leading to the determination of power 
factor. Here, the active apparent power is different 
from average active power (P). The another drawback 
of these decompositions is that, there is no definition of 
power similar to the average power (P), which is the 

cause for energy transfer from source to load. 

D. Sharon’s Power Decomposition 

The active power based on the average of 
instantaneous power is not used in the Shepherd and 
Zakikhani’s power decomposition, which is very much 
useful in determining the energy calculations. Hence, 
in order to alleviate this drawback, Sharon proposed a 
new decomposition in which Active Apparent Power 
(Sa) is replaced by Average Power (P) as given below 
[4].  

2 2 2 2
q cS P S S= + +     (21) 

1

2 2
sinq n n

n n

S V I φ
∈

= ∑     (22) 

2 2 2
c qS S P S= − −     (23) 

E. Buchholz – Goodhue Apparent Power 

Definition  

The Buchholz–Goodhue proposed apparent power 
definition as follows [5]-[6]. 
The effective voltage of three-phase is defined as, 

2 2 2
e a b cV V V V= + + .                (24) 

The effective current of three-phases is defined as 
2 2 2

e a b cI I I I= + +                 (25) 

The effective apparent power is defined as given 
below. 

2 2 2 2 2 2
e a b c a b cS V V V I I I= + + + + .  (26) 

F. Kusters and Moore’s Power Decomposition  

The authors decomposed current as active, capacitive 
reactive or inductive reactive and residual reactive 
currents to identify the capacitive or inductive load for 
the improvement of power factor [7]. 

Active current is defined as 
2

( ) ( )a

P
i t v t

V
=  (27) 

Capacitive reactive current is the current component, 
which can be compensated by the capacitance in the 
case of inductive load. 



 

  

( )
( )

0

2

RMS

( )
1/ ( )

( )

( )

T

qc

dv t
T i t dt

dt dv t
i t

dtdv t

dt

=
  
     

∫
  (28) 

Residual reactive current is derived as follows. 

( ) ( ) ( ) ( )qcr a qci t i t i t i t= − −    (29) 

If the load has capacitive nature, the inductive reactive 

current ( qLi ) to compensate the load is defined as 

below. 

( )
( ) ( )

( )
( )0

2

RMS

1/ ( ) ( )

( )

( )

T

qL

T v t dt i t dt

i t v t dt

v t dt

=
 
 
 

∫ ∫
∫

∫
 (30) 

Residual reactive current 

( ) ( ) ( ) ( )qLr a qLi t i t i t i t= − −    (31) 

The apparent power is defined as  
2 2 2 2

kus kusrS P Q Q= + +     (32) 

 .kus qcQ V I=  reactive power for the inductive load. 

(or) .kus qLQ V I=  reactive power for the capacitive 

load. 

.kusr qcrQ V I=  residual reactive power for inductive 

load. 

(or) .kusr qLrQ V I=  residual reactive power for 

capacitive load. The reactive power defined by authors 
‘  ( )kusQ ’ is not the maximum value of reactive power, 

which can be compensated by a capacitor under non-
ideal supply voltages and in the presence of source 
impedance. Hence the optimum capacitance value can 
not be found from the defined reactive power [8]. 

G. A. Ferrero, G. Superti-Furga Power Components  

The authors have defined the power components in 
both time domain and frequency domains. These are 
presented under the following two headings [9]. 

Time Domain Decomposition 

The active current is defined as 
2

( ) ( )
p

a

P
i t v t

V
= . Where 

Pp is the average value of the real power and V is the 
rms value of the voltage Park vector. The residual 

current is obtained as ( ) ( ) ( )x ai t i t i t= − . The currents 

defined as above are more effective than the 
decomposition on the single phase basis, since they 
attain the optimal redistribution of the average power 
Pp for a specified voltage. Hence, to have zero sum 
currents the following equation should be followed. 

2 2 2
 ( )a b c

am m

a b c

P P P
i v t

V V V

+ +
=

+ +

, here , ,m a b c=  (33) 

Frequency Domain Decomposition 
The active and reactive powers are defined as below. 

2 2,
u u

p k k p k k

k N k N

P G V Q B V
∈ ∈

= = −∑ ∑               (34) 

Nu is the set of similar harmonic components in current 
and the voltage vector. The equivalent conductance 

2

p

e

P
G

V
= . Then the active current ia is defined as 

( ) ( )
u

jk t

a e e k

k N

i t G v t G V e ω

∈

= = ∑ .              (35) 

Then i(t) can be decomposed as follows. The 
summation of individual harmonic active current is 
written as given below. 

( )
u

jk t

ag k k

k N

i t G V e ω

∈

= ∑                (36) 

The scattered current defined as  

( ) ( ) ( ) ( )
u

jk t

s ag a k e k

k N

i t i t i t G G V e ω

∈

= − = −∑  (37) 

The reactive current is ( )
u

jk t

r k k

k N

i t j B V e ω

∈

= ∑   (38) 

( )
f

jk t

f k

k N

i t I e ω

∈

= ∑     (39) 

Nf is the set of dissimilar harmonic components in 
current and voltage vector. 

Finally the total current is a s r fi i i i i= + + +  (40) 

Because of the orthogonality, the above equation can 
be written for the rms values as given below. 

2 2 2 2 2
a s r fI I I I I= + + +     (41) 

Again, the reactive current can be divided into two 
components based on the average value of park 
imaginary power and it is defined as given below. 

p qQ V I= ,
2

p

e

Q
B

V
=     (42) 

( ) ( )q ei t jB v t=−     (43) 

The reactive scattering current is 

( ) ( ) ( )rs r qi t i t i t= −     (44) 

Total reactive current is 
2 2 2
r q rsI I I= +   (45) 

The total current is decomposed as given below 
2 2 2 2 2 2

a s q rs fI I I I I I= + + + +    (46) 

The drawbacks of these power components include not 
consideration of zero sequence currents and voltages, 
inability to derive single phase situation from three-
phase case and there is no generalization to the 
polyphase systems for more than three phases [10]. 

H. Page Decomposition  

According to Page, the current can be decomposed 
into two components. One is “in-phase” current and 
other is “quadrature” current. These two are obeying 
the orthogonal principle; hence the quadrature 
component did not contribute to the active power 



 

transmitted to the load [11].  

2
( ) ( )  and   p q p

P
i t v t i i i

V
= = −    (47) 

I. Nabae and Tanaka Current Decomposition  

For nonsinusoidal waveforms in three-phase three-
wire systems, the instantaneous voltage and current 
space vectors are defined below [12]. 

( )

( )

2 /3 4 /3

2 /3 4 /3 ( )

2 / 3 ( )

2 / 3 ( )

j j

a b c

j j j t

a b c

v v v e v e v t

i i i e i e i t e

π π

π π φ

= + + =

= + + =

�

�      (48) 

av , 
bv , 

cv are the instantaneous phase voltages. 
ai , 

bi , 

ci are the instantaneous line currents. 

The current is resolved as in-phase ( pi ) and quadrature 

(
qi ) components. 

( ) ( ) cos ( )   ( ) ( ) sin ( )p qi t i t t i t i t tφ φ= = . (49) 

The instantaneous active and reactive powers are 
defined as given below. 

( ) ( ) ( ) ( ) ( ) cos ( )

( ) ( ) ( ) ( ) ( )sin ( )

p

q

p t v t i t v t i t t

q t v t i t v t i t t

φ

φ

= =

= =
  (50) 

Where ( )tφ is the instantaneous phase angle. 

The instantaneous apparent power is defined as 
2 2( ) ( ) ( ) ( ( )) ( ( ))s t v t i t p t q t= = +  

The instantaneous power factor is defined 

as
( )

cos ( )
( )

p t
pf t

s t
φ= =    (51) 

J. Willems Apparent Power and Power Factor  

Here, three new concepts are introduced to 
characterize the transmission efficiency and oscillatory 
behavior of the power. The oscillating power Sosc is 
defined as the rms value of the oscillating components 
of the instantaneous power. The rms power Srms is 
defined as the rms value of the instantaneous power. 

The oscillation power factor (
oscλ ) is defined as the 

ratio of average or active power to the rms power 

oscλ =P/ Srms. The oscillation power factor is zero for 

the pure oscillatory power and there is no net energy 
transfer. It equals one if the instantaneous power is 
constant [13]. 

Single Phase Sinusoidal Supply Condition 

The supply voltage and current considered for this 
case are given below. 

( ) cos ( )   and     ( ) cos ( )m mv t V t i t I tω α ω β= + = +    (52) 

The expression for instantaneous power is given below. 

( ) ( )

( ) ( )

( ) ( ) ( ) cos cos 2

       = cos cos 2

p t v t i t VI VI t

VI VI t

α β ω α β

φ ω α β

= = − + + +

+ + +

         (53) 

The oscillating power is the rms value of the oscillating 

components of the instantaneous power Sosc = 
1

2
V I , 

But V I =S, which is general apparent power definition. 
The rms power and oscillation power factor are defined 
as given below. 

2 2 2 2(1 / 2)rms oscS P S P S= + = +               (54) 

2 2 2 2 21 3 1 1

2 2 2 2

osc

P P

P S P Q

λ
λ

λ

= = =

+ + +

      (55) 

where λ  is the conventional power factor i.e
P

S
λ = . 

The maximal value of the oscillation power factor is 
obtained for a purely resistive or active load ( λ =1) and 
equals to 0.816. The oscillation power factor equals 
zero for a purely reactive load. Then power is purely 
oscillating with zero average value. 
 
Single Phase Distorted Voltage and Current 
 
The voltage and current considered to define the 
powers are given below. 

( )0

1

( ) 2 cosk k

k

v t V V k tω α
∞

=

= + +∑   (56) 

( )0

1

( ) 2 cos
k k

k

i t I I k tω β
∞

=

= + +∑   (57) 

( ) ( ) ( )p t v t i t=      

( )0 0

1

1
( ) cos

t T

k k k k

kt

P p t dt V I V I
T

α β
+ ∞

=

= = + −∑∫  (58) 

2 2

2 2 2

1
( )

t T

rms

t

osc rms

S p t dt
T

S S P

+

=

= −

∫
                (59) 

 
Three-Phase Sinusoidal or Nonsinusoidal Voltages 
and Currents 
 

( )
, , ,

Re( ) cosT

i i i i

i a b c n

P V I V I α β∗

=

= = −∑              (60) 

2 2 2 2 2 2 2 2 .  a b c n a b c nS V V V V I I I I= + + + + + +        (61) 

The alternate complex power can be defined as 
T . aP V I=  

The magnitude of the alternate complex power equals 
to the amplitude of the oscillation of the instantaneous 
power. 
1. The oscillating power Sosc equal to the rms value of 

the alternate complex power 
1

2
osc aS P= . 

2. The rms power equals Srms = 
22 (1/ 2) aP P+  



 

  

3. The oscillating power factor equals 

22 (1/ 2) a

P

P P+

 

The maximal value of the oscillation power factor is 
obtained for a balanced load and positive sequence 
phase voltages and is equal to one. This is true for the 
load having reactive nature also. In these definitions of 
apparent power and power factor, there is no 
distinction between reactive power and oscillating 
power, which are independent quantities. This one is 
also not clearly giving the clear demonstration about 
different power phenomenon in the case of non ideal 
conditions. 

K. IEEE Working Group Power Definitions 

The power definitions for single-phase and three-
phase systems according to IEEE working group on 
power definitions are given below [14]. 

Single Phase System 
The nonsinusoidal voltage and current considered for 
defining the powers are given below. 

0

0

0

0

( ) 2 sin( )

( ) 2 sin( )

h h

h

h h

h

v t V V h t

i t I I h t

ω α

ω β

∞∞∞∞

≠≠≠≠

∞∞∞∞

≠≠≠≠

= + += + += + += + +

= + += + += + += + +

∑∑∑∑

∑∑∑∑
              (62) 

The RMS voltage and current are defined as given 
below. 

2 2

0 0

h h

h h

V V I I    

∞ ∞∞ ∞∞ ∞∞ ∞

= == == == =

= == == == =∑ ∑∑ ∑∑ ∑∑ ∑    (63) 

2 2 2 2 2 2
1 1H HV V V I I I    = + = += + = += + = += + = +  

The apparent power (S) is defined as  
2 2 2 2 2 2

1 1 1 1( ) ( ) ( ) ( ) ( )H H H HS V I V I V I V I V I= = + + += = + + += = + + += = + + + (64) 

The non-active power (N) is defined as  
2 2

N S P= −= −= −= −                 (65) 

The non-active apparent power ( NS ) is defined as  
2 2 2 2

1 1( ) ( ) ( )N H H H HS V I V I V I= + += + += + += + +              (66) 

The power factor is defined as pf=
P

S
 

Three-Phase System 

The effective voltage ( eV ) and current ( eI ) in three-

phase system defined as given below. 

2 2 2 2 2 2

;   
3 3

a b c a b c
e e

V V V I I I
V I

+ + + +
= =   (67) 

 
2 2 2 2 2 2

1 1      e e eH e e eHV V V I I I= + = +  

The effective fundamental voltage ( 1eV ) and current 

( 1eI ) are defined as  

2 2 2 2 2 2
2 21 1 1 1 1 1
1 1;       

3 3

a b c a b c
e e

V V V I I I
V I

+ + + +
= =  (68) 

The effective harmonic voltage (
eHV ) and current 

(
eHI )are defined as  

2 2 2 2 2 2
2 2

1 1

;  
3 3

ah bh ch ah bh ch
eH eH

h h

V V V I I I
V I

≠ ≠

   + + + +
= =   

   
∑ ∑ (69) 

 
The effective apparent power is defined as  

3e e eS V I=                  (70) 

3. Power Theories In Nonsinusoidal Situation 

A. Instantaneous Reactive Power Theory  

Instantaneous Reactive power theory is proposed by 
Akagi H., Kanazawa Y., and Nabae A [15]-[16]. The 
main aim of this theory is to develop a mathematical 
formulation for the instantaneous reactive power, so 
that the reactive power can be compensated not only in 
steady state conditions, but also in transient conditions. 
This theory is using the instantaneous values of 
voltages and currents to formulate the compensating 
quantities. The abc phase voltages and currents are 
transformed to the stationary α β−  axis, which are 

orthogonal coordinates, using the Clarke 
transformation as given below.  
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The instantaneous real power is defined by using the 
product of the instantaneous voltage on one axis and 
the instantaneous current on the same axis. 

p v i v iα α β β= += += += +                             (73) 

In abc coordinates it is given by 

a a b b c cp v i v i v i= + += + += + += + + .               (74) 

To define the instantaneous reactive power, 
instantaneous imaginary power has been used, which 
will not follow the conventional electrical quantity. It is 
defined by using the product of the instantaneous 
voltage in one axis and the instantaneous current in 
another axis. 
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In abc coordinates the expression for the same is given 
below. 
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The instantaneous real power and imaginary power can 
be expressed in the following matrix form. 
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It can be rearranged in the following form. 
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The various terms in the above equation are defined as 
follows. 
α - axis instantaneous active current 
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β - axis instantaneous active current 
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β - axis instantaneous reactive current 
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The instantaneous powers in the α -axis and β - axis 

are defined as follows. 
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where  
α - axis instantaneous active power 
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α - axis instantaneous reactive power 
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β - axis instantaneous active power 
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β - axis instantaneous reactive power 
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The control strategy for the compensation of the 
desired load powers is given below. 
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where fi α , fi β  are the reference filter currents, fp  and 

fq are the powers to be compensated. The 

instantaneous real and imaginary power can be divided 
in the following way.  

p p p= + � where p  and p�  are the dc and ac 

components of the instantaneous real power. 

q q q= + �where q  and q�  are the dc and ac 

components of the instantaneous imaginary power. 

By selecting fp p= and fq q q= + � , the 

instantaneous harmonic active current, instantaneous 
fundamental reactive current and instantaneous 
harmonic reactive current can be compensated. 
Because of the compensation of instantaneous reactive 
currents, the displacement power factor is unity in both 
steady and transient states. 
 

B.The CPC Theory  

Czarnecki extended the Fryze’s current 
decomposition for characterizing the load more 
precisely, by defining the scattering, unbalance and 
harmonic generated currents. This theory is given in 
the following sections for different supply and load 
conditions [17]. 
 
CPC Theory for LTI Loads in Single Phase 
Systems 

The supply voltage considered for the analysis is 
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 The load admittance is n n nY G jB= +  

The corresponding load current is 
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The load current is decomposed based on the nature of 
contribution to the total current.  
 
ACTIVE CURRENT 

It is one of the component of decomposed load 
current, which is proportional to the supply voltage and 
supplies the load average power with a minimum RMS 
current. 
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REACTIVE CURRENT 

It is summation of current harmonic components, 
which are in quadrature with the corresponding voltage 
harmonics. 
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SCATTERED CURRENT 
It is summation of current components, which are 

present due to the difference between the conductance 
of harmonics (Gn) and the load equivalent conductance 
Ge. 
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LOAD-GENERATED HARMONIC CURRENT 
If the harmonic current is generated in the load, it 

will become a source of energy and supply it to the 
source. This energy is dissipated in the source 
resistance. Due to opposite flow to the active current, 
this current will not contribute to the load active power 
and in addition to that, it reduces the active power 
transfer to the load. 

cosn n c nP V I φ= , for 
2

n

π
φ > . Here, ic is the load-

generated harmonic current. 
In this case, the active current should be redefined 
based on the average power excluding the power 
contributed by the load-generated harmonic current and 
the supply voltage, which excludes the effect of load-
generated harmonic current. 
 
CPC in Three-Phase Three-Wire Systems with 
Nonsinusoidal Voltages and Currents for LTI Loads 
 

The supply voltage is symmetrical, positive sequence 
and nonsinusoidal but without zero sequence 
harmonics. 

12  Re
jn t

n N n N

e
ω

∈ ∈

= =∑ ∑n nv v V                (91) 

The active current can be expressed as 
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The reactive current is  
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The unbalanced current is  
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The scattered current is defined as 
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Due to the three-phase load nonlinearity or periodic 
time-variance, it can become energy source at some 

harmonic frequencies ( c
N ), which will contribute to 

negative harmonic power. In those cases, load-
generated harmonic current will exists. 
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These currents are mutually orthogonal, so that 
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= + + +a s r ui i i i i             (101) 

 
Working Current and Power with Regards to Load 
Compensation 
 

The nonsinusoidal unbalanced supply voltage is 
resolved in the following way. 

+ +p n
1 h1v = v v v               (102) 

The active power of load (P) is decomposed as 
below. 

p n
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where 
p

1P is the fundamental positive sequence power, 

n
1P  is the fundamental negative sequence power and 

Ph is the harmonic active power. 
The working current, which is the reference source 
current for the compensation is defined as given 
below. 
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Here the components for working current and power 

chosen are 1
p

wP P=  and = p
w 1v v . 

The CPC theory is able to decompose the load current 
in order to know the nature of the loads existed in the 
system. By decomposing the load current in terms of 
active, reactive, scattered, unbalanced and generated 
currents, it is possible to select the currents which are 
to be compensated. Even though this theory is able to 



 

answer some of the ambiguities present in defining the 
power definitions, it is also facing some criticisms. In 
the definition of unbalanced current, getting 
unbalanced admittance matrix from the supply voltages 
and currents is a cumbersome process. The defined 
instantaneous active current is same for all the loads 
having the same average power. This definition is 
offering a many to one mapping, where as it is not 
possible to go from one to many. This means that by 
having the instantaneous active current, it is not 
possible to define the nature of the load. Apart from the 
above limitations, this theory is not fully developed to 
define the powers under unbalanced and nonsinusoidal 
supply voltage conditions. 

C. Instantaneous Symmetrical Component Theory 

Let us consider the supply voltages as  
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The requirements of load compensation are 
1. After compensation, the source neutral current 

must be equal to zero. 
2. The reactive power supplied by the source is 

controlled by the phase angle difference between 
the positive sequence voltage and positive 
sequence current. 

3. The source should supply the load average 
power. 
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Here, a

+v  and sa

+i are the positive sequence voltage 

and currents. φ  is the desired phase angle between 

a

+v  and 
sa

+i . lavgP  is the average load power. For the 

above three conditions, the reference source currents 
are formulated as given below. 

( )

( )

( )

0

2 2 2

0

2 2 2

0

2 2 2

a a b c
sa lavg

a b c

b a c a
sb lavg

a b c

c a a b
sc lavg

a b c

v v v v
i P

v v v

v v v v
i P

v v v

v v v v
i P

v v v

β

β

β

− + −
=

+ +

− + −
=

+ +

− + −
=

+ +

            (107) 

where, zero sequence voltage ( )0

1

3
a a b cv v v v= + +   

This theory is originated mainly to compensate the load 
with out an attempt in defining the powers [18]. By 
realizing the derived reference source currents, it is 
possible to meet the demands of the load 
compensation. This theory is able to provide load 

compensation under balanced sinusoidal conditions. 
But, under unbalanced or nonsinusoidal supply 
voltages, it is not able to provide the satisfactory 
compensation. 
 

4. Formulation Of Reference Source Currents For 
The Load Compensation 

The reference source currents for the load 
compensation under non ideal supply voltages are 
mainly classified as four types and they are given 
below 
1. Instantaneous active current (Based on instantaneous 
power) 
2. Instantaneous active current (Based on average 
power) 
3. Sinusoidal source current 
4. Optimized source current 
The source current formulations for the four types are 
given in the following sections. 
 
Instantaneous Active Current (Based on 
instantaneous power) 
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In this formulation, the instantaneous power coming 
from the source should not be affected by the 
compensator. In order to achieve this, the compensator 
should not have any energy storage elements, so that 
the instantaneous power delivered or consumed by the 
compensator is zero. Here, the instantaneous active 
current is at any time proportional to the voltage and 
corresponding to the instantaneous power. For the 
unbalanced or nonsinusoidal supply voltages the 
denominator is not constant and it will cause for the 
introduction of the harmonics in the source current 
which are not present in the supply voltages. This is 
one of the obstructions for not achieving the unity 
power factor in this case [10], [15], [19]. 
 
Instantaneous Active Current (Based on average 
power) 
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Here m=a, b, c. 
 

In this case, the numerator and denominator values 
are constant at every instant. Hence, the instantaneous 
active current is proportional to the supply voltage and 
hence giving the unity power factor. It will give the 
minimum rms source current for the given average load 
power and hence less power losses in the system. Here, 
the current corresponds to the average power is 
supplied by the source and the oscillating component 
of the power is supplied by the compensator with the 
energy storage elements [17], [20]-[23]. 
 



 

  

Sinusoidal Source Current 
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In this formulation, the compensated source current 
is proportional to the positive sequence fundamental 

voltage (
1

p

mv ) and hence the source currents after 

compensation will be balanced and sinusoidal even 
though supply voltages are unbalanced and distorted. 
Under these conditions the displacement power factor 
is unity but the true power factor is not unity, because 
of the compensated source currents are not collinear to 
the supply voltages [17], [19], [21], [24]-[28]. 
 
Optimized Source Current 

Here, the reference source currents are formulated by 
keeping the aim of maximum power factor after 
compensation with the allowable distortion and 
unbalance. The main objective here is to supply the 
average load power with the minimum line losses. 
Optimization techniques like Lagrange multiplier and 
sequential quadratic programming are used to solve the 
formulated optimization problem [21]-[22], [29]-[30]. 

5. Conclusions 

In this paper, the major power decompositions and 
power theories are presented in the light of load 
compensation under ideal and nonideal supply 
conditions. Even though, the researchers are trying to 
solve the problem of defining the powers under 
nonideal conditions, every decomposition or theory is 
limited in formulation and explaining the reactive 
power and other fictitious powers. Fryze had shown a 
path to decompose the current based on orthogonality 
principle. Czarnecki and others are following this tool 
to decompose the current to know the nature of load 
before compensation. However, still there is a question 
of how many decompositions have to be made and 
validity of them. Shepherd and Zakikhani tried to find 
out optimum capacitance value for the load 
compensation under different supply conditions. But, 
these decompositions are not useful for the 
compensation of time varying loads. In the Klusters 
and Moore decomposition, the load reactive current is 
divided into capacitive and inductive in order to 
compensate with the compensator of inductance and 
capacitance respectively. Willems proposed a new 
concept for defining the apparent power which is using 
the active power and rms value of the oscillating 
power. The decompositions defined in the time domain 
are not giving frequency information; similarly the 
decompositions made in the frequency domain are not 
giving time information. The p-q and instantaneous 
symmetrical component theories are mainly targeted 
towards the load compensation with some specific 
goals in prior. In the later part of the paper, four types 
of reference source currents formulations are presented. 

From these reference source currents, it is understood 
that in the instantaneous compensation of non useful 
components of currents, it is not possible to 
characterize the load instantaneously using samples at a 
particular time. To know the nature of the load, it is 
necessary to take the instantaneous samples over a 
period, i.e T, because the powers in the power system 
are defined on a periodic basis but not on instantaneous 
basis. 
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