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Abstract: In this paper, a rotor speed deviation and 

multilayer perceptron neural network (MPLNN) based 

transient stability prediction scheme is presented. The 

scheme uses the sum of the maximum rotor speed deviations 

(MSDs) of the individual generators in a power system as 

inputs to an MPLNN. The proposed scheme predicts 

transient stability one cycle after the tripping of a bus or line 

following a disturbance. The trained MLPNN responded to 

56 transient unstable cases with 100% accuracy. The 

response to 41 transient stable cases was also 100% 

accurate. The IEEE 39-bus test system was used for the 

study. 
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1. Introduction 

Industrialization, population growth, and 

modernisation have led to a huge demand for electric 

power. This huge demand coupled with inadequate 

generation capacity has resulted in most power systems 

operating their generators with reduced stability 

margins, thus making such systems weak [1]. 

Consequently, the occurrence of a disturbance 

endangers the stability of such systems.  

Under normal operating conditions, an electrical 

power system is near equilibrium, with only minor 

deviations from true steady-state conditions caused by 

small, nearly continuous, changes in load. When a 

large disturbance such as a three-phase short circuit 

occurs in a power network, there are significant, nearly 

instantaneous rise in power requirement from some 

generators. Instead of the power system returning to a 

steady-state condition after the disturbance, one or 

more generators may encounter sufficient variations in 

rotational speed and may lose synchronism.  

Generators losing synchronism must be taken off line 

to avoid catastrophic problems.  Whenever generators 

are taken off line, capacity decreases, thus introducing 

another large disturbance leading to cascading system 

failures. This could cause equipment damage, pose 

safety hazards to personnel, contribute to cascading 

outages, and the shutdown of large areas of a power 

system or the entire system [2, 3]. Control measures 

such as out-of-step blocking and tripping, fast-valve 

control of turbines, dynamic braking, superconducting 

magnetic energy storage systems, system switching, 

modulation of high voltage direct current (HVDC) link 

power flow, and load shedding are employed to 

mitigate the effect of cascading system failures [4].   

The effectiveness of the aforementioned control 

measures are improved with the prediction of transient 

instability [4]. To this end, researchers have come up 

with a number of transient instability prediction 

schemes [4-21]. These schemes employ decision trees 

[5], neural networks [4, 6-9], neural networks and 

fuzzy logic [10-14], support vector machines [15], 

wavelet analysis [16], apparent impedance [17], 

numerical routines or state space techniques [18-20] 

and autoregression [21].   

The methods [18-20] are computationally 

demanding for on-line application. Also, the Decision 

tree based technique has limited forecast accuracy. 

Additionally, the proposed techniques have delayed 

prediction times 

In this paper, a generator speed deviation and 

multilayer perceptron neural network based transient 

stability status prediction scheme is proposed. The 

scheme predicts transient stability status 20ms (1 cycle 
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for a 50Hz) after the tripping of a bus or line in 

response to a disturbance. The scheme can be easily 

realized with the aid of phasor measurement units 

(PMUs) which can communicate time-tagged phasor 

measurements such as rotor speed deviations to a 

central location. This enables the tracking of the 

dynamic state of a system in real time. The proposed 

scheme uses the sum of the individual maximum rotor 

speed deviation of each generator as input to a trained     

MLPNN which does the prediction. 

 

2. Used power system configuration 

The transient stability status prediction scheme was 

developed using the IEEE 39-bus test system which is 

also known as the New England test system. The IEEE 

39-bus test system is a standard test system that is 

widely used for small and large signal stability studies 

[4]. The test system consists of 10 generators, one of 

which is a generator representing a large system. Data 

for the modeling of the test system was obtained from 

[22].  The test system is shown below as Fig. 1. 

  

 
Fig. 1  IEEE 39-bus Test System 

 

3. Rotor speed deviation 

Equation 1 shows the fundamental equation 

governing rotor dynamics. This equation is commonly 

referred to as the swing equation [23 and 24].  
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where   is the rotor angle, mP is mechanical power, 

 eP  
is electrical power and M  is the inertia 

coefficient. 

Rotor angles have been extensively used for 

transient stability studies. Rotor angles need to be 

expressed relative to a common reference. This 

reference cannot be based on a single generator, since 

any instability in the reference generator makes the 

relative angles meaningless. In order to overcome this 

difficulty, the concept of system center of inertia (COI) 

angle, co defined in equation 2 is used to obtain a 

reference angle.  
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where δi and Hi are the rotor angle and inertia constant 

of the ith generator, respectively. The angle, δi is 

usually approximated by the phase angle of the 

respective generator bus voltage [25 and 26]. Many 

researches however discourage the use of rotor angles 

in algorithms. This is because the COI values, in 

practice require continuous updates using real time 

measurements. This requires extra pre-processing and 

has significant errors [25]. Rotor angles, thus best 

serve as the reference parameter for telling stability 

status of a system in a simulation. Other electrical 

parameters whose use in algorithms, do not have 

practical constraints may then be employed for 

algorithm development.  

The time derivative of rotor angle is the rotor 

speed deviation in electrical radians per second [23, 

and 26]. Mathematically,  

s
dt
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where

 

 is the rotor speed deviation,  is the rotor 

speed at a particular time, and s is the synchronous 

speed. It follows from equations (1) and (3) that the 

swing equation can be written as 
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It can also be shown that   
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where H is the inertia constant and aP  is the difference 

between input mechanical power and output 

electromagnetic power. For stability to be attained after 

a disturbance, it is expected that 0
dt

d
 in the first 

swing. This equation gives rise to the equal area 

criterion which is a well-known classical transient 

stability criterion. From equations (3) and (5), it can be 

written that 
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Equation (6) then suggests speed deviation as a good 

input parameter for the prediction of transient stability 

status. The maximum speed deviation at some time 

during a disturbance can be used to predict transient 

instability or otherwise. The best time is within the first 

swing, like the equal area criterion.  

This paper demonstrates the validity of rotor speed 

deviations for transient stability prediction.  Fig. 2 and 

Fig. 3 show waveforms of rotor speed deviations for 

transient stable and transient unstable cases. It is noted 

from Fig. 2 and Fig. 3 that unstable swings are 

characterised by higher rotor speed deviations 

compared with stable swings. Consequently, the sum 

of the maximum speed deviations of the generators for 

an unstable swing is greater than the sum of the 

maximum speed deviations of the generators for a 

stable swing.  

Thus, the sum of the maximum speed deviation of 

the individual generators of a system following a 

disturbance can be a suitable input data for the 

prediction of transient stability status. The input data 

used for the proposed scheme is given as follows: 
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Where x  is the input data, i  
is rotor speed 

deviation, Max(i) is the maximum rotor speed 

deviation, and N is the number of generators. 

 

 
Fig. 2  Speed deviations for a stable swing for a three-phase 

fault between buses 11 and 6 

 
Fig. 3  Speed deviations for an unstable swing for a    three-

phase fault between buses 11 and 6 

 

4. Multilayer perceptron neural network 

Artificial Neural networks (ANNs) are constructed to 

make use of some organizational principles resembling 

those of the human brain [27]. They represent a 

promising new generation of information processing 

systems. Neural networks are good at tasks such as 

pattern-matching and classification, function 

approximation, optimization and data clustering [27]. 

ANNs can be used to extract patterns and detect trends 

that are too complex to be noticed by either humans or 

other computer techniques [28]. ANNs are made up of 



 

 

a number of simple and highly interconnected 

processing elements called neurons, as shown in Fig. 4.  

The mathematical model of a neuron is expressed as 

[28]: 

         

N

k
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where, jO  is the output of a neuron, jf is a transfer 

function, which is differentiable and non-decreasing, 

usually represented using a sigmoid function, jkw is an 

adjustable weight that represents the connection 

strength, and kx  is the input of a neuron. 

 

 
Fig. 4 Mathematical model of a neuron 

  

A three-layer feed forward multilayer perceptron 

neural network (MLPNN) with no bias was used for 

this study. Fig. 5 shows the architecture of the MLPNN 

used. The choice was informed by the fast decision 

making capability of MLPs [29].  

 
Fig. 5  A three-layered MLPNN 

 

The input layer had one neuron with a transfer 

function, which is purelin. The input data x , was the 

sum of the maximum speed deviations of the 10 

generators, in one cycle after the tripping of a bus or 

line.  

The output, y of a purelin transfer function for a 

given input x is given as: 

xy          
(9) 

The hidden layer had two neurons with tangent 

sigmoid transfer functions. The output, y of a tangent 

sigmoid transfer function for a given input x is given 

as: 
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y
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The output had one neuron with a transfer function 

which is purelin. The MLPNN was trained to give an 

output, O , of “0” for a swing that will be transient 

stable and an output of “1” for a swing that will be 

transient unstable. The MLPNN was trained using the 

Levenberg-Marquardt back-propagation technique. 

The Levenberg-Marquardt algorithm trains a 

neural network 10 to 100 times faster than the 

usual gradient descent back propagation method. 

This algorithm is an approximation of Newton‟s 

method and it computes the approximate Hessian 

matrix [30] 
 

5. Simulations 

The modeling and simulation of the test system 

were carried out using the Power System Simulator for 

Engineers (PSSE) software [31].  Three-phase faults 

were created at various buses and on various lines. The 

simulations were carried out for four different loading 

levels. The levels are base load, base load increased by 

5%, base load increased by 7%, and base load 

increased by 10% [25].  

A total of 107 fault cases were simulated out of 

which 61 resulted in transient instability while 46 were 

transient stable cases. A system was seen as being 

transient unstable if the rotor angle difference between 

any two generators exceeds 180 degrees 1 second after 

fault clearing time [4]. The output data (for analysis) 

from the simulations were generator speed deviations 

sampled using a sampling frequency of 6kHz. All 

transient stable cases had fault durations of 0.1s while 

transient unstable cases were realized for faults lasting 

between 0.7s and 0.9s. These times are similar to that 

reported in [4].  

 

6. Data analysis 

The analysis of the output data (rotor speed 

deviations) was done using the MATLAB software 



 

 

[32]. In MATLAB, the speed deviations of each 

generator after the tripping of a line or bus were further 

sampled using a time window of 20ms. For each cycle 

(sample window), the maximum speed deviation 

(MSD) was obtained for each generator. The obtained 

maximum speed deviations of each generator were 

then added. Table 1 shows sum of MSDs for unstable 

conditions within one cycle after the tripping of 

various lines following three-phase faults. Table 2 

shows sum of MSDs for stable conditions within one 

cycle after the tripping of various lines following three-

phase faults.  Table 3 shows sum of MSDs for unstable 

conditions after the disconnection of a bus following a                                                                           

bus fault. Table 4 shows sum of MSDs for stable 

conditions after the disconnection of a bus following a 

bus fault. A study of the sum of MSDs for the various 

cases show that cases which led to transient instability 

had a much higher value compared to cases which did 

not result in transient instability.  Thus the sum of the 

maximum speed deviations of the individual generators 

one cycle after the tripping of a line or bus can be used 

as an input data for the prediction of transient stability 

status. 

 

Table 1: Sum of maximum speed deviations for various line faults (unstable cases) 

Bus – Bus 11 –  6 10 – 13 13 – 10 13 – 14 22 – 21 22 – 23 26 – 25 29 – 26 28 – 26 

Sum of MSDs  0.0324 0.0326 0.0313 0.0312 0.0283 0.035 0.0283 0.0165 0.0155 
 

Table 2: Sum of maximum speed deviations for various line faults (stable cases) 

Bus – Bus 11 –  6 10 – 13 13 – 10 13 – 14 22 – 21 22 – 23 26 – 25 29 – 26 28 – 26 

Sum of MSDs  0.0047 0.0047 0.0045 0.0045 0.0041 0.0041 0.0036 0.0036 0.0019 
 

Table 3: Sum of maximum speed deviations for various bus faults (unstable cases) 

Bus 11  13 28 

Sum MSD 0.0324 0.0312 0.0137 
 

Table 4: Sum of maximum speed deviations for various bus faults (stable cases) 

Bus 11  13 28 

Sum of  MSD 0.0047 0.0045 0.0019 
 

7. Transient stability status prediction scheme 

The proposed transient stability status prediction 

scheme uses a feedfoward multilayer perceptron 

artificial neural network with 1 input neuron, two 

hidden layer neurons and 1 output neuron [33].  The 

input to the neural network is the sum of the maximum 

speed deviation (SMSD) of the individual generators of 

the power system one cycle after the tripping of a line 

or bus following a disturbance. The network was 

trained with sum of maximum speed deviation (SMSD) 

data obtained from five transient unstable cases and 

SMSD data obtained from five transient stable cases. 

The clear distinction between the transient stable data 

as against the transient unstable data permitted the use 

of a small volume of training data set. The output pair 

of each of the five transient unstable case data was „1‟ 

while that of the transient stable data was „0‟. 

 

 
 

The output of the MLPNN like any other neural 

network in the testing phase usually has an error with 

respect to its actual binary value. A similar situation is 

observed in digital communication networks, where the 

received bits have some deviation with respect to the 

sent bits. In these networks, the TTL standard is 

usually used in the receiving equipment to detect the 

received bits. This standard is also used to determine 

the output status of the MLPNN [4].  

18.0  jj OO  (Transient unstable)     (3) 

0O2.0O jj  (Transient stable)     (4) 

where jO  is the output of a MLPNN. 

In the digital communication networks, if the value 

of a received bit is in the range of 0.2 to 0.8, it is 

considered as a missing bit. Besides, if a “1” bit is 

received in the range of 0 to 0.2 or a “0” bit is received 



 

 

in the range of 0.8 to 1 it is considered an error bit, 

which is a worse incorrect case than the missing bit. 

This interpretation for the error and missing bits is also 

used for the output of the MLPNN. 

A flowchart of the proposed transient stability 

status prediction scheme is shown below as Fig. 6. 

 

Fig. 6 Flowchart of transient stability status prediction 

scheme 

 

The trained MLPNN, responded to the 56 transient 

unstable cases with 100% accuracy. The responses to 

the 41 transient stable cases were also 100% accurate. 

 

8. Conclusion 

A transient stability status prediction scheme has been 

proposed in this paper. The proposed scheme is based 

on the rotor speed deviations of generators in a power 

system 1 cycle after the tripping of a bus or line 

following a disturbance, and multilayer perceptron 

artificial neural network. The scheme sums the 

maximum rotor speed deviations of the individual 

generators of a system 1 cycle after the tripping of a 

bus or line and uses this sum as input to a trained 

multilayer perceptron neural network which predicts 

the transient stability status. The proposed scheme 

predicts transient stability status with 0% error.  
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