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Abstract: In this paper an algorithms is developed for fault 

diagnosis and fault tolerant control strategy for nonlinear 

systems subjected to an unknown time-varying fault in the 

presence of modeling error. Faults in an industrial process 

could be timely detected and diagnosed in many cases. It is 

possible to   subsequently reconfigure the control system so 

that it can safely continue its operation (possibly with 

degraded performance) until the time comes when it can be 

switched off for maintenance. In order to minimize the 

chances for drastic events such as a complete failure, safety-

critical systems must possess the properties of increased 

reliability and safety. Faults in robotic systems are 

inevitable. They have diverse characteristics, magnitudes and 

origins, from the familiar viscous friction to 

Coulomb/Sticktion friction, and from structural vibrations. 

This paper presents an on-line environmental fault detection 

and an accommodation scheme. The performance of the 

proposed scheme is applied to a SCARA robot to show the 

effectiveness of the proposed approach. 
 

Keywords:  Fault Diagnosis, Robotics, SCARA Robot Arm, 
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1. Introduction 

            Recently, fault-tolerant control has gained 

increasing attention in the context of chemical process 

control; however, the available results are mostly based 

on the assumption of a linear process description 

[11,12] and do not account for complexities such as 

control constraints or the unavailability of state 

measurements. In process control, given the complex 

dynamics of chemical processes (example, 

nonlinearities, uncertainties and constraints) the success 

of any fault-tolerant control method requires an 

integrated approach that brings together several 

essential elements, including: (1) the design of 

advanced feedback control algorithms that handle 

complex dynamics effectively, (2) the quick detection 

of faults, and (3) the design of supervisory switching 

schemes that orchestrate the transition from the failed 

control configuration to available well-functioning 

fallback configurations to ensure fault-tolerance.  

Diagnosis and supervision are important in many 

applications. Different approaches for fault detection 

using mathematical models have been developed in the 

last 20 years. The task consists of the detection of faults 

in the processes, actuators and sensors by using the 

dependencies between different measurable signals. 

This consists of comparing the behaviour of the real 

system and the behaviour of a model of the system. In 

an ideal case, the system and the model behave exactly 

the same and a fault is detected when the behaviours are 

different, but usually there are differences between the 

behaviours of the system and the model. 

    The effectiveness of the proposed approach is verified 

by the development of the FTC scheme for a SCARA 

robot. Results of this extensive numerical study are 

included to verify the applicability of the proposed 

scheme. 

During the detection stage, faults are monitored and 

detected using a detection/approximation observer, 

which is robust with respect to unmodeled dynamics. 

The detection/approximation observer is also used to 

approximate changes whose dynamics are not found to 

be equivalent to any a-priori known change scenarios. 

The dynamics of the fault can be approximated using on-

line approximation techniques, which include: multi-

layer neural networks, polynomials, rational functions, 

spline functions, radial-basis-function (RBF) networks, 

adaptive fuzzy systems, etc... [1][2]. From the past 

experience, RBF networks performed very well in  

robotic applications. For  this reason, they are employed  
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in this  paper  for approximation purposes [3][2]. Section 

2 describes the dynamic model of the robotic system and 

of the faults. The general framework of the proposed 

scheme is studied in section 3. This section thoroughly 

investigates every stage of FTC. Simulation studies are 

presented in section 4. Faults can be separated into two 

distinct categories: those that change the nonlinear 

dynamics of the nominal model, and those that do not. 

The second category depends only on time, and not on 

the states or the inputs, and therefore can be modelled as 

additive. 

There are very effective techniques that can 

accommodate such faults, which include robust control 

and adaptive control. Faults which belong to the first 

category have nonlinear dynamics and are have superior 

capabilities than conventional techniques. They are 

more difficult to handle because they depend both on 

the system’s states and the input control signals. The 

purpose of our research work is to design a very 

effective method that specifically deals with the system 

state and input dependent faults, while being robust 

with respect to the unmodeled dynamics.  

 

2. Dynamic models 

    This section presents the well-studied dynamic 

structure of the robotic system. The second part of this 

section, concentrates on the dynamical structure, 

configuration and nomenclature of the changes (faults) 

in the robotic system. Innovations like parametric 

change history profiling and decoupled torque-

dependent and state-dependent change model are 

introduced and thoroughly analyzed. 

 

2-1. Robotic system 

       The dynamic motion of the robot arm in a robotic 

system is produced by the torques generated by the 

actuators. This relationship between the input torques 

and the time rates of change of the robot arm 

components configurations, represent the dynamic 

model of the robotic system [3]. 

    The dynamic model of the robotic system can be 

derived using either Lagrangian, or Newton-Euler 

methods [3]. Both methods lead to the identical system 

of differential equations, which have been extensively 

studied in the literature on robots [3] [5] [6]. A general 

healthy n-degree of freedom robotic system is described 

by the following system of differential equations: 

      𝑀 𝜃 𝜃 + 𝑉 𝜃,𝜃  + 𝐺 𝜃 + 𝜇 𝜃,𝜃 , 𝜏, 𝑡 = 𝜏   (1) 

where 𝜃,𝜃 ,𝜃  𝜖 𝑅𝑛denote the vectors of joint positions, 

velocities, and accelerations, respectively, 𝜏𝜖 𝑅𝑛  is the 

vector of input torques, 𝐺 𝜃 𝜖 𝑅𝑛    is the vector of 

gravitational torque, 𝑉 𝜃,𝜃  𝜖 𝑅𝑛    is the vector 

representing Coriolis and centripetal forces, 

𝑀 𝜃 𝜖 𝑅𝑛×𝑛    is the inertia matrix whose inverse exists, 

and  𝜇 𝜃,𝜃 , 𝜏, 𝑡 𝜖 𝑅𝑛      denotes the unmodeled 

dynamics. It is assumed that the unmodeled dynamics 

are bounded. 
 

2-2. Faults 

       There are faults, which are referred to as drastic. 

They affect the system in such a way that it cannot 

function any further, and any ordinary control 

techniques cannot counteract their effects. An example 

of component catastrophic fault is a break of a joint or a 

link section. An example of actuator catastrophic fault 

is a short circuit in electric motor, permanently 

damaging the wiring. This type of faults is the worse 

case fault scenario and its effects on the system are 

obviously   devastating. The  only  way they   can    be  

corrected is by direct operator (human) involvement 

and replacement of the system components. This paper 

concentrates only on the faults of smaller magnitudes, 

or non-drastic, which can be accommodated with 

ordinary control techniques. This type of faults includes 

different variations of friction, misbalances in the joint 

or actuator, the interaction with the external, etc… 

These faults can significantly affects the system’s 

performance as well, which can be expressed in the loss 

of productivity, reduced life expectancy of the system, 

and unsafe environment for people and the   external 

environment. 

   Thus, the presence of faults (non- catastrophic) is both 

state and time dependent, and their presence and 

magnitude is affected by a number of parameters. A 

general representation of the fault dynamics is taken to 

be: 

𝐹 𝜃,𝜃 , 𝜏, 𝑡 = 𝛽 𝑃 − 𝑝 𝑓 𝜃,𝜃 , 𝜏             (2)   

Where: 𝑓 𝜃,𝜃 , 𝜏 𝜖 𝑅𝑛  ∶Denotes the fault dynamics, 

and 𝛽 𝑃 − 𝑝  𝜖 𝑅𝑛×𝑛 ∶   represents the state and/or time 

dependent fault profile that has the following structure: 

   

𝐹 𝜃,𝜃 , 𝜏, 𝑡 = 𝑑𝑖𝑎𝑔[𝛽1 𝑃1 − 𝑝1 ,𝛽2 𝑃2

− 𝑝2 ,… ,𝛽𝑛 𝑃𝑛 − 𝑝𝑛 ]      
 



𝛽𝑗  𝑃𝑗 − 𝑝𝑗  =  
1 𝑖𝑓 𝑝𝑗  ∈ 𝑃𝑗
0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

                   (3) 

 𝛽𝑗  𝑃𝑗 − 𝑝𝑗   represents the state and time history of 

the fault in the 𝑗𝑡𝑕
 
state, 𝑝𝑗 is some parameter (for 

example time, or velocity), and 𝑃𝑗 is a region in this 

parameter history where the fault is present. The 

instance of the fault is declared when the value of 

the 𝑝𝑗  traverses into the 𝑃𝑗  region.  

 

2-2-1. Fault Dynamics 

          Each fault is assumed to be linearly 

parameterized, which can be expressed in the following 

form: 

𝑓𝑚 𝜃,𝜃 , 𝑡 =

 
 
 
 
 
 
 
 
 
  𝑐𝑚1𝑖

𝑤𝑚
1𝑖

𝑠

𝑖=1

 𝜃1,𝜃 1, 𝜏1 

 𝑐𝑚 2𝑖
𝑤𝑚

2𝑖

𝑠

𝑖=1

 𝜃2,𝜃 2, 𝜏2 

.

.

 𝑐𝑚𝑛𝑖
𝑤𝑚

𝑛 𝑖

𝑠

𝑖=1

 𝜃1,𝜃 1, 𝜏𝑛 
 
 
 
 
 
 
 
 
 
 

    

 

 

               =  

 
 
 
 
 
𝑐1𝑖

𝑚𝑤𝑚
1𝑖
 𝜃1,𝜃 1, 𝜏𝑛 

𝑐𝑚 2𝑖
𝑤𝑚

2𝑖
 𝜃2,𝜃 2 , 𝜏2 
.
.

𝑐𝑚𝑛𝑖
𝑤𝑚

𝑛𝑖
 𝜃1 ,𝜃 1 , 𝜏𝑛  

 
 
 
 

𝑠
𝑖=1  

 

           =    𝑑𝑖𝑎𝑔𝑠
𝑖=1  𝐶𝑚 𝑖

 𝑊𝑚 𝑖
 𝜃,𝜃 , 𝜏 ,  

for m 1, 2, . . . , 2N-1                               (4) 
 

Where 𝐶𝑚 𝑖
 𝜖𝑅𝑛  is a vector of the weights or parameters 

and 𝑊𝑚 𝑖
: 𝑅𝑛 × 𝑅𝑛 × 𝑅+ → 𝑅𝑛 is a vector of dynamic 

functions. 

 
2-2-2. State and Torque-dependent Faults 

          The fault dynamics can be represented as 

 

                𝑓𝑚 𝜃,𝜃 , 𝜏, 𝑡 = 𝑓𝑚𝜃  𝜃,𝜃  + 𝑓𝑚𝜏  𝜏                  (5) 

 

Where 𝑓𝑚𝜏  𝜏  and 𝑓𝑚𝜃  𝜃,𝜃  represent torque-dependent 

and state-dependent faults respectively. 

Summarizing this section’s analysis of the faults in the 

robotic system, we arrive at the following 

comprehensive model of the robotic system: 

           

              𝑀 𝜃 𝜃 + 𝑉 𝜃,𝜃  + 𝐺 𝜃  + 𝜇 𝜃,𝜃 , 𝜏, 𝑡                            
𝑅𝑜𝑏𝑜𝑡𝑖𝑐  𝑆𝑦𝑠𝑡𝑒𝑚  𝑠 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠

 + 

 

               +𝛽 𝑃 − 𝑝  𝑓𝑚𝜃  𝜃,𝜃  + 𝑓𝑚𝜏  𝜏                     
𝐹𝑎𝑢𝑙𝑡  𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠

 = 𝜏 
𝐼𝑛𝑝𝑢 𝑡  
𝑇𝑜𝑟𝑞𝑢𝑒  

      (6) 

 
3. Detection/Approximation Observers 

    The detection/approximation observer is a 

multifunction mechanism that bonds the entire FTC 

scheme together. While the system is healthy it is used 

to monitor it for faults and detect them if they do occur. 

During the subsequent stages, it is used to approximate 

and accommodate unknown fault dynamics, and to 

monitor the system for fault absence. Each of the 

detection/approximation observer application becomes 

evident in later sections. It is carefully designed to be 

robust with respect to unmodeled dynamics, and state 

and torque-dependent faults. 

The approximated torque-dependent and state-

dependent fault dynamics in an n degree of freedom 

system can be represented by the following equations: 

 

𝑓 𝜏 𝜏, 𝑡 =

 
 
 
 
 
𝑕1 𝑡 𝜏1 

𝑕2 𝑡 𝜏2 .
.

𝑕𝑛 𝑡 𝜏𝑛   
 
 
 
 

=

 
 
 
 
 
𝑕1 𝑡 0 . . 0

0 𝑕2 𝑡 . . 0
. . . . .
. . . . .
0 0 . . 𝑕𝑛 𝑡  

 
 
 
 

 
 
 
 
 
𝜏1 

𝜏2 
.
.
𝜏𝑛   

 
 
 
 

= 𝑑𝑖𝑎𝑔 𝐻 𝑡  𝜏 

 

𝑓 𝜃 𝜃, 𝜃 , 𝑡 =  

 
 
 
 
 
 
𝑙1𝑖

 𝑡 𝑞
1𝑖
 𝜃1 

𝑙2𝑖
 𝑡 𝑞

2𝑖
 𝜃2 

.

.
𝑙𝑛𝑖 𝑡 𝑞𝑛𝑖

 𝜃𝑛  
 
 
 
 
 

𝑘

𝑖=1

+  

 
 
 
 
 
 𝑠1𝑖

 𝑡 𝑧1𝑖 𝜃
 
1 

𝑠2𝑖
 𝑡 𝑧2𝑖 𝜃

 
2 

.

.
𝑠𝑛𝑖 𝑡 𝑧𝑛𝑖 𝜃

 
𝑛  
 
 
 
 
 

𝑘

𝑖=1

 

 

=   𝑑𝑖𝑎𝑔 𝐿𝑖 𝑡  𝑄𝑖 𝜃 + 𝑑𝑖𝑎𝑔 𝑆𝑖 𝑡  𝑍𝑖 𝜃  
𝑘
𝑖=1     (7) 

 

Where: 𝐻 𝑡 ∈ 𝑅𝑛 ,𝐿𝑡(𝑡) ∈ 𝑅𝑛  and 𝑆𝑖 𝑡 ∈ 𝑅𝑛  are the 

vectors of the weights or parameters. In equation (7) the 

velocity and the position dynamics are decoupled for 

analytical purposes. It does not affect the approximation 

effort, although it allows detecting the position-

dependent   faults  and  the velocity-dependent faults  

individually. Both velocity - dependent and position- 

dependent dynamics of the fault are approximated using 

RBF neural network structures composing the 𝑄𝑖(𝜃) ∈

𝑅𝑛  and 𝑍𝑖(𝜃 ) ∈ 𝑅𝑛  vectors, and are structured as 

follows: 



       𝑞𝑖𝑗  𝜃𝑗  = 𝑒𝑥𝑝  −
 𝜃𝑗−𝑎𝑖𝑗  

2

𝜎𝑖𝑗
2

 ,  𝑧𝑖𝑗  𝜃 𝑗  = 𝑒𝑥𝑝  −
 𝜃𝑗−𝑏𝑖𝑗  

2

𝜔 𝑖𝑗
2

   

 

𝑓𝑜𝑟 =  
𝑖 = 1,2,… . , 𝑘
𝑗 = 1,2,… ,𝑛

                                                  (8) 

Where  𝑎𝑖𝑗   , 𝑏𝑖𝑗  ,𝜎𝑖𝑗  𝑎𝑛𝑑  𝜔𝑖𝑗   are the parameters of 

these networks [2] [7].  

 

 The detection/approximation observer is proposed:  

                                                    

𝜃  = −𝑀−1 𝑉 + 𝐺 + 𝑀−1 𝐼 − 𝑑𝑖𝑎𝑔 𝐻  𝜏 

−𝑀−1   𝑑𝑖𝑎𝑔 𝐿𝑖 𝑄𝑖 + 𝑑𝑖𝑎𝑔 𝑆𝑖 𝑍𝑖 

𝑘

𝑖=1

− 𝛾  𝜃  − 𝜃                                            (9) 

 

Where∶  𝛾 = 𝑑𝑖𝑎𝑔[𝛾1  , 𝛾2,… , 𝛾𝑛  ] is a positive definite 

stability matrix [4] [5]. 

 

3-1. Detection 

   Let 𝑒𝑜 = 𝜃 − 𝜃 denote the state estimation error, which 

will serve also as the residual vector [5] [2]. During the 

detection stage, the FTC monitors the system for the 

presence of the faults. While the system is healthy or no 

fault is present, the true system dynamics is represented 

as follows: 

 

𝜃 = −𝑀−1 𝑉 + 𝐺 + 𝑀−1𝜏                                 (10) 

 

While the system is healthy, the approximation model 

has the following form: 

𝜃  = −𝑀−1 𝑉 + 𝐺 + 𝑀−1𝜏 − 𝛾  𝜃  − 𝜃          (11) 

The dynamics of the estimation error in this case will be 

equal to: 

 
𝑒 = −𝛾𝑒                                                            (12) 

 

3-2. Approximation 

       Let: 

  𝐻 = 𝐻 − 𝐻∗, 𝐿𝑡 = 𝐿𝑡 − 𝐿∗, and 𝑆𝑡 = 𝑆𝑡 − 𝑆∗ 

 Consequently we obtain: 

𝑒 0 = −𝛾𝑒0𝑀
−1 𝑑𝑖𝑎𝑔 𝐻  𝜏 +   𝑑𝑖𝑎𝑔 𝐿𝑖  𝑄𝑖 +𝑘

𝑖=1

𝑑𝑖𝑎𝑔 𝑆𝑖  𝑍𝑖 − 𝜂]                                              (13) 

 

A Lyapunov function of the following form is 

employed: 

𝑈 =
1

2
𝑒0
𝑇𝑒0 +

1

2
𝐻𝑇 𝑇−1𝐻 +

1

2
 𝐿𝑖

Γ Ψ−1𝑘
𝑖=1 𝐿𝑖 +

1

2
 𝑆𝑖

Γ Y−1𝑘
𝑖=1 𝑆𝑖 ≥ 0  

 

Where Γ,Ψ,𝑌 ∈ 𝑅𝑅×𝑎are adaptive gain matrices 

gains. Therefore: 

𝑈 = 𝑒0
𝑇𝑒 0 + 𝐻𝑇 Γ−1𝐻 +  Li

T Ψ−1𝑘
𝑖=1 𝐿𝑖 +

 Si
T Y−1𝑘

𝑖=1 𝑆𝑖   

 

By setting : 

 

𝐻𝑇 Γ−1 = 𝑒0
𝑇𝑀−1𝑑𝑖𝑎𝑔 𝜏  𝑜𝑟 𝐻 = Γ𝑑𝑖𝑎𝑔 𝜏 𝑀𝑒0

−1 

𝐿𝑖
𝑇 Ψ−1 = 𝑒0

𝑇𝑀−1𝑑𝑖𝑎𝑔 𝑄𝑖  𝑜𝑟 𝐿𝑖 = Ψ𝑑𝑖𝑎𝑔 𝑄𝑖 𝑀𝑒0
−1, for 

i =1, 2,…, k 

 

𝑆𝑖
𝑇 Ψ−1 = 𝑒0

𝑇𝑀−1𝑑𝑖𝑎𝑔 𝑍𝑖  𝑜𝑟 𝑆𝑖 = Y𝑑𝑖𝑎𝑔 𝑍𝑖 𝑀𝑒0
−1  

 

We obtain: 

𝑈 = −𝑒𝑇𝛾𝑒 − 𝑒𝑇𝑀−1𝜂                                     (14) 

 

When 𝜂 = 0  , we obtain:  𝑈 = −𝑒𝑇𝛾𝑒 ≤ 0  

Which is a negative semi-definite matrix, and therefore 

the approximation error will converge to zero. When 

𝜂 ≠ 0  , we obtain: 

𝑈 = −𝑒0
𝑇𝛾𝑒0 − 𝑒0

𝑇𝑀−1𝜂 

Following the previous analysis, the approximation 

observer’s equation will be: 

 

𝜃  =  −𝑀−1 𝑉 + 𝐺 + 𝑀−1 𝐼 + 𝑑𝑖𝑎𝑔 𝐻  𝜏 +

𝑀−1   𝑑𝑖𝑎𝑔 𝐿𝑖 𝑄𝑖 + 𝑑𝑖𝑎𝑔 𝑆  − 𝛾𝑒 𝑘
𝑖=1          (15) 

 

3-3. Accommodation 

       Under healthy conditions, the nominal input 

torque 𝜏 = 𝜏0 is given by: 

 

𝜏0 = 𝑀 𝜃  𝐾𝑃 𝜃 − 𝜃 𝑑 + 𝐾𝑑 𝜃 − 𝜃 𝑑 + 𝜃 𝑑  +

𝑉 𝜃,𝜃  + 𝐺(𝜃)                                                 (16) 

Where 𝜃𝑑 ,𝜃 𝑑 ,𝜃 𝑑 ∈ 𝑅𝑛   are the vectors of desired joint 

positions, velocities, and accelerations, respectively, 

and 𝐾𝑝 ∈ 𝑅𝑎×𝑛  and 𝐾𝑦 ∈ 𝑅𝑛×𝑅 are negative definite 

matrices, which are designed, so that exponential 

convergence of the tracking errors is achieved. 

Applying the proposed torque and stage-dependent fault 

models, the input should have the following structure: 

 



𝜏 =  
 𝐼 − 𝑑𝑖𝑎𝑔 𝐻 𝑡   −1  𝜏0 + 𝑓 𝜃 𝜃,𝜃 , 𝑡  

𝜏0

     (17)   

 

4. Simulations results 

    For simplicity, a three-link SCARA robot is 

utilized in this study. The dynamic equations, which 

can be derived via the Euler-Lagrangian method, are 

represented as follows: 

 

 

𝐷11 𝐷12 𝐷13

𝐷21 𝐷22 𝐷23

𝐷31 𝐷32 𝐷33

  

𝑞 1
𝑞 2
𝑞 3

 

+ 𝑙1𝑙2𝑠𝑖𝑛 𝑞2  

𝐶11 𝐶12 𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

  

𝑞 1
𝑞 2
𝑞 3

 +  
0
0

−𝑚3𝑔
  

Where: 

 𝐷11 = 𝑙2
1  

𝑚1

3
+ 𝑚2 + 𝑚3 

+ 𝑙1𝑙2 𝑚2 + 2𝑚3 𝑐𝑜𝑠 𝑞2 

+ 𝑙2
2  

𝑚2

3
+ 𝑚3  

𝐷13 = 𝐷23 = 𝐷31 = 𝐷33=0 

𝐷12 = −𝑙1𝑙2  
𝑚2

2
+ 𝑚3  𝑐𝑜𝑠 𝑞2 −  

𝑚2

3
+ 𝑚3 

= 𝐷21 

𝐷22=𝑙2
2  

𝑚2

3
+ 𝑚3 , 𝐷33 = 𝑚3   

𝐶11 = −𝑞 2 𝑚2 + 2𝑚3  , 𝐶12 = −𝑞 2  
𝑚2

2
+ 𝑚3   

𝐶13 = 𝐶22 = 𝐶23 = 𝐶31 = 𝐶32=𝐶33 = 0 

 

In which 𝑞1 ,𝑞2  and 𝑞3 are the angles of joints 1, 2 

and 3; 𝑚1 ,𝑚2 and  𝑚3 are the mass of links 1, 2 and 

3; 𝑙1 , 𝑙2and 𝑙3 are the length of links 1, 2 and 3; 𝑔 is 

the gravity acceleration. Moreover, the system 

parameters of the SCARA robot are selected as: 

𝑙1 = 1.0 𝑚    𝑙2 = 0.8𝑚    𝑙3 = 0.6𝑚  
𝑚1 = 1.0𝑘𝑔  𝑚2 = 0.8𝑘𝑔   𝑚3 = 0.5𝑘𝑔  𝑔 = 9.8     
This simulation study demonstrates that the  

presented scheme is effective when applied to a real life 

robotic system. The simulation was conducted using 

Matlab  & Simulink [12]. 

In the joints (components), the most common and ever 

present type of faults is friction. Friction has been 

extensively analyzed and varieties of models are 

available. Friction models in the works by C. Canudas 

de Wit [8] [9] [10] provide an excellent reflection of 

friction in the real joint: 

- Coulomb / Sticktion ∶  𝑓 𝜃  = 𝛼𝑠𝑖𝑔𝑛(𝜃 ) 

- Viscous : 𝑓 𝜃  = 𝛼 𝜃  
 

   In SCARA manipulators, actuators are generally 

electric motors. Faults in rotating electric motors may 

be classified as electric faults, rotational faults and 

vibration faults: 

𝑓 𝜏 = 𝛼𝜏, −1 < 𝛼 ≤ 𝐾 ≤ ∞  

Where K is some maximum value that 𝛼 can reach.  

The first stage of the numerical study analyzes 

performance of the detection/approximation observer. 

Figure 1 - Figure 9 demonstrate results of such study 

with an example of actuator and component fault 

detection and accommodation in a SCARA robot. The 

previously described fault dynamics are applied in this 

simulation.  

 

 
  Fig. 1. Residual 1 

 
  Fig. 2. Residual 2 
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Fig. 3. Residual 3 

 

 
  Fig. 4. Position error 1 

 

 
  Fig. 5. Position error 2 

 
  Fig. 6. Position error 3 

 

 
  Fig. 7. Velocity error 1 

 

 
  Fig. 8. Velocity error 2 
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  Fig. 9. Velocity error 3 

 

5. Conclusion 

    The new modeling technique was used to develop a 

very effective approach that both monitors the robotic 

system’s health and its environment, and provides 

significant improvements to its performance. It is robust 

with respect to unmodeled dynamics. Detection, 

Isolation, and Accommodation (FTC) can be easily 

reshaped to work with a wide variety of systems and 

faults. One of the great advantages of the approach is 

that it can be applied to hydraulic, electrical or other 

types of robotic systems with minor modifications. This 

approach gives robotic system the tools to be aware of 

its constantly changing internal and external 

environment, identify or learn any faults, and 

accommodate them.  

The results of simulations in the case of a healthy, but 

subject to uncertainties modeling show that residues 

vary and are moving away from zero. They are 

therefore sensitive to uncertainties in modeling. This 

creates false alarms and false detections. Future works 

is to introduce a threshold of detection and show how it 

can improve defect detection and reduce false alarms. 
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