
 
 
 
 

FOPDT Model fitting to an nth-Order All Pole NMP Processes  
by an Optimal Method 

 
Ehsan Ghorbani, Alireza Sedaghati 

Nonprofit Institute of Shahabdanesh,Qom , Iran 

ehsan.contact@yahoo.com , eerfaculty@yahoo.com 
 

 

 

Abstract - The aim of this paper is to present a method to 
approximate the nth-order all pole systems with a zero by 
the widely used first-order plus dead-time (FOPDT) model 
in s-plane. To establish this method, impulse response 
approach is used .This method is applicable for s-shaped 
functions. The main novelty of the present method is the 
closeness of the approximated transfer function to the 
process model. That is the square of the 2-norm of the 
error signal between the impulse responses of the system 
and the presented model that is chosen as an index 
function. By globally minimizing this index function, three 
nonlinear equations are obtained in terms of the 
parameters of FOPDT model. Then these equations are 
analyzed and proved that always have unique solution to 
the FOPDT model parameters. Finally, by solving the 
nonlinear equations the optimal values of FOPDT model 
parameters are achieved. Numerical example is included 
to present the advantage of the presented method. The 
proposed research uses optimal method to approximate 
the nth-order all pole systems by the far-reaching used 
general form of the first-order plus dead time (FOPDT) 
model. This proposed investigation has described the 
structure of optimal FOPDT model, which is analytically 
modeled for a several industrial processes. The method is 
based on fitting to special form of transfer function in 
optimal manner. To compare the performance of the 
method of this paper and two another, impulse response 
approach is presented. Further, the obtained results show 
that the optimal FOPDT model fitting to an nth-order all 
pole process is capable of optimizing the similarity the 
model and real systems, less undershoot, and faster 
settling time than other mentioned method. 
 
Key words- All pole process, FOPDT model Fitting, Zero 
in s-plane, Optimal manner, optimal parameters, Time 
delay, Impulse response approach, Nonlinearity, Index 
function. 
 
 
Nomenclature 
 

nProcess order 
τ Process time-constant 

∞k Steady state gain of process 
ψ Real number 
 

1. Introduction 
We can find many complicated systems in the many 
process control field that their response to a step 
input is a bounded and monotonic s-shaped function 
of time. Usually for modeling such systems, first-
order plus dead-time (FOPDT) transfer function is 
used [1,2,12,13]. Since this transfer function is a low-
order and simple with three different parameters, 
named system gain, dead time (time delay), and time 
constant. Hence it is suitable for identification 
purpose [14,2]. 
Furthermore, the basic and main design methods and 
tuning techniques in the practical controllers such as 
PID controller are generalized and developed for the 
FOPDT transfer function [1,2,14]. Primary 
identification methods for FOPDT model were area-
based techniques is analyzed in [1,3]. A direct 
method has been presented in [3,4]. A modified relay 
feedback identification method is studied in [5]. A 
set of general expressions, which is also doable for 
the FOPDT model systems, is obtained from a single 
symmetrical relay feedback test for models 
identification in [6,20]. 
 In [2,7,9] an reality manner for on-line FOPDT 
model identification and PI controller tuning and 
adjust is given. A real-coded genetic algorithm is 
showed for identification FOPDT transfer function 
from step response [8,15,16].  Erected on using the 
closed-loop system step response, two identification 
algorithms are presented for obtaining the FOPDT 
and second-order plus dead-time (SOPDT) models 



[9,10]. An on-line iterative program for identification 
of a type of nonlinear  
FOPDT model is showed in [9,11,21]. 
Recently, by allowing the parameters of the 
conventional FOPDT transfer function to be time 
dependent a time-varying extension of this model is 
developed in[12,21]. One of the systems that step 
response is an s-shaped function and therefore it is 
suitable to be described by FOPDT model[18,19, 22], 
is the nth-order all pole system that  is, a system with 
n same poles and no zeros [13,17,18]. The purpose of 
this paper is to present an optimal manner for 
approximating such systems by a FOPDT model. In 
this paper is obtained an inequality for boundary that 
need for selected parameters by global optimization 
and to use nonlinear equations. In here, major 
purpose is to give a method for optimization, and is 
obtained a closer model within achieve desired 
parameters. 
This paper is organized as described below. In 
section 2 describes with following nth- order 
processes and stable FOPDT model in order to 
introducing industrial process. In here we tend to use 
FOPDT model for optimal of describing of the 
process. In section 3 focuses how the modeling of 
distance index between industrial and modeling 
process by 2- norm of the error signal. In section 4 
proposes a nonlinear equation between two last 
equation. in section 5, will be expressed an example 
and comparisons with the other method. The section 
6 concludes the proposed scheme numerically is 
carried out. Moreover comparisons of two area 
method and direct method with brought scheme show 
better than two another methods. 
Identified and optimization and faster settling time, 
less undershoot or overshoot, continue to be of major 
concern in system operation. This arise the facts that 
in steady state. Easier calculation, discover and 
formulating desired transfer function parameter with 
minimum settling time a, on the other hand, 
optimizing with best parameter and most similar 
model by minimizing 2-norm. 
 

2. Problem formulation 
Consider the following nth-order all pole process with 
a zero: 

(1 )
( )

(1 )p n

k s
G s

s

ψ

τ
∞

+
=

+                                             
(1) 

Where 0τ >  is the process time-constant and n  is 
the process order that is assume to be at least two, 
k ∞ indicates the steady state gain of the process,

, 0Rψ ψ∈ ≠ are available, without loss of generality it 
is assumed to be positive. 
    The stable FOPDT model is defined as follows: 
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G s

Ts

−
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Where  0T >  is the model time-constant, 0L >  is 
the model time-delay, and A  is the dc gain of the 
model. 
       Significant and important design procedures and 
tuning methods in industrial controller and 
particularly in PID controller are presented based on 
the model (2) [1].  
Therefore, for utilizing and better usage of these 
procedures there are many interests and efforts to use 
the model (2) in describing the stable industrial 
process. In here we are enthusiasm to use model (2) 
for optimal description of the process (1). In more 
precise wording, while the parameters of the process 
(1) ,k τ

∞ , and n  are given, it is needed to fit the 
model (2) in it in an optimal manner. It means that in 
model (2) the parameters ,A L  and T  should be 
determined so that a defined distance index (norm) 
between the process (1) and model (2) to become 
minimum. Since the index to be used in here, will be 
in time domain it is suitable to rewrite the ( )pG s  and 

( )mG s  as follows: 
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Therefore by having ,a k  and n  one should 
determine ,µ λ  and L  in an optimal manner. 



3. Impulse response approach 
In here the distance index between the process ( )pG s  

and model ( )mG s  are defined as follows:

{ }
2

0
( ) ( )m pg t g t dt

+∞
= −∫I

                                  (4)
 

Where, ( )pg t  and ( )mg t  are the impulse response of 
the process and the model reactively, that is: 
 

( ) ( )1 1( ) ( ) , ( ) ( )p p m mg t G S g t G S− −= =L L
                      (5)

 

 
Note that the defined index in (4) is the square of the         
2-norm of the error signal ( ) ( )m pg t g t− . 
One can easily obtain: 
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( )1 ( )( ) ( ) ( )t L

m mg t G S e u t Lλµ− − −= = −L            (7) 

Where, ( )u t  is unit step signal. In order to minimize
I , it is needed to obtain its derivatives of I with 
respect to ,µ λ , and L ; then setting them all equal to 

zero. Substituting ( )mg t  from (7) into (4), it results: 

{ }2( )

0
( ) ( )t L

pe u t L g t dtλµ
+∞ − −= − −∫I

                        (8)
 

Differentiating (8) with respect to µ ,gives:   

( )( ) ( )

0
2 ( ) ( )

t L t L

pe e g t u t L dt
λ λ

µ
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Solving the equation 0
µ

∂
=

∂

I
 results 
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Differentiating (8) with respect to λ , gives: 
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0
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Solving the equation 0
λ

∂
=

∂

I
 and simplifying it 

bysome mathematical manipulation, results: 
24 ( ) ( )L t

pL
e t L g t e dtλ λµ λ

+∞ −= −∫                               
(12) 

Due to the presence of the step function ( )u t L−  in 

(8), determining 
L

∂

∂

I
dose not seems to be simple. In 

order to overcome this difficulty, let expand (8) 
which gives:  
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Now, the calculation of 
L

∂

∂

I
 is doable and from (13) 

we get: 
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Finally, the result of the equation 0
L
∂

=
∂

I
 is: 

( ) ( )L t

p pL
g L e g t e dtλ λλ

+∞ −= ∫                                     (15) 
 
By solving equation (10), (12), and (15) 
simultaneously one can obtain the optimal values of 

,µ λ , and L .Note that, in obtaining these equations
( )pg t , given in (6), has not been used. Therefore, 

these three equations are satisfied and used for any 
given process. That is, in fitting the FOPDT model 
based on the index function (4) for any process one 
must solve the equation (10), (12), and (15) where 

( )pg t  is the impulse response of the under 
considering process. 
 

4. Solving the nonlinear equations 
To solve the nonlinear equations (10), (12), and (15) 
simultaneously seems to be a difficult task.   
       However Eq. (15) is free of the parameter µ and 
also it can be omitted between the equation(10) and 
(12). Left sides of the equation (10) and (12) are the 
same thus, by setting right sides of these equations 
equal to each other one gets: 
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On the other hand, using (6) gives: (the first usage of 
the given ( )pg t )  
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Using part by part integration technique, the first 
term of the right hand of (17) is obtained as follow: 
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From (17) and (18) results: 
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Left sides of the equation (16) and (19) are the same 
thus, by setting the right sides of them equal to each 
other we have: 
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Substituting ( ) t

pL
g t e dtλ+∞ −∫  from (20) into (15) gives: 

2 1 2

a

n aL
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− −                                                       (21) 
Now, by replacing λ  from (21) into (15) the 
following equation is obtained: 
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In Eq. (22) the values of a  and n  are known and the 
only unknown parameter of the equation is L . That 
is by solving equation (22) the optimal value of L  is 
obtained. 
      By defining the parameter θ  and the variable t ′  
in the following form 

,aL t atθ θ′= = −                                            (23) 
and with a little mathematical manipulation Eq. (22) 
can be written as follows: 
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Expanding 2( )nt θ −′ + : 
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Where: 
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According to (25) the existed integration in Eq. (24) 
is obtained as follow: 
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From (24) and (27) results: 
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The above equation can be simplified in the 
following form:  
 

( ) 0f θ =                                                            (28) 
 
Where: 
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By solving Eq. (28) one can obtain θ . According to 
the definition of θ  given in (23), θ  must be positive. 
Having obtainedθ , the value of L  is determined 

from L
a

θ
= . Then, from (21) the value of λ  is 

obtained. The achieved value of λ  is acceptable if it 

is positive, thus θ  should be less than
2 1

2

n −
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means it is needed to look for the root of ( ) 0f θ =  in 

the interval 
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manipulation the function ( )f θ becomes to:  
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Thus, it is needed to look for the root of the 

( ) 0ng θ =  in the interval 
2 1

0,
2

n
θ

−
∈ 
 
 

. The 

following theorem is about the roots of the equation 
( )0, 0.5nθ ∈ − in interval of (0, 0.5)nθ ∈ − .  

Theorem1: Equation ( ) 0ng θ =  has a unique 

solution in the interval ( )0, 0.5 .nθ ∈ −  
Proof: 
From (31) it is achieved:  
 

( )
3

( 2) ! 1 2 1
(0) 0

2 { ( 1)} 2

n
n n

g
n L n nψ

−

− −
= − <

+ −            (32) 

( ) ( ) 3
2 1 2 1 2 1 2

( ) 0
2 2 2 { ( 1)}

n
n n n n

g
n L nψ

−

− − − −
= − >

+ −  
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Remark1:we have ( )2 1
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n
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−
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( 1) 1 3 / (2 1)L n nψ+ − > − −  

 
Therefore, the function ( ) 0ng θ =  at the beginning 
and the end points of the interval (0, 0.5)n −  has two 
different signs .Beside ( ) 0ng θ =  is continuous in the 
interval (0, 0.5).n −  
Consequently, in this interval, certainly ( ) 0ng θ = has 
at least one root. Due to the lengthiness of the proof 
of root uniqueness, the rest of the proof is not 
brought here. This is end of the proof. ■ 
Let the normalized functions ( ) 0nNg θ =  to be      
defined in the following form: 

max

( )
( ) n

nN
n

g
g

g
θ

θ =
                                                   

 (34)                    

Where maxng  indicates the maximum value of the       

( ) 0ng θ = in interval of (0, 0.5)n − . 

The graphs of ( ) 0nNg θ =  for 2n =  are brought in 

Fig.1. This figure also illustrates that ( ) 0nNg θ =  and 

therefore ( ) 0ng θ =  has a unique root in interval of  
(0,n−0.5). 

 
Fig.1. Plots of ( ) 0nNg θ =  versus θ  (for 2n = ). 

 
By having n and employing f-zero command in 

MATLAB, one can easily solve equation ( ) 0ng θ =  in 
the interval (0, 0.5)n − and obtain the unique solution 
for ( ) 0ng θ = , which is denoted by *θ  . In table1 the 

obtained values of *θ are brought for n = 2 to n = 16. 
 

 
Table 1. The root of ( ) 0g nθ =  in the interval ( 0.5)n −  

(for n = 2 up to n =16). 
 
Having *θ  and considering equations (23), (25), 
(12), and (22) the optimal values of , Lλ ,and µ are 
obtained as follows:  
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n  2 3 4 5  6 

*θ  1.34  1.87  3.9  4.12  5.5 
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Theorem 2:The index function I , which is defined in 
(4), has a global minimum at point * * *( , , )Lµ λ  
Proof: 
It is omitted for limitation in the paper pages number. 
Here, the algorithm in the flowchart is shown. 
 

 
 Fig. 2. Flow chart for optimal parameters. 
 

5. Illustrative example 
        An eight order all pole process is given: 
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 Comparing with (3) we have:  

1, 1, 8, 2a k n ψ= = = = −  
 From table 1 and equations (37-39) one gets:

* * *7.83, 0.0908, 0.016L λ µ= = =  
Therefore, the obtained FOPDT modelfor this 
process is:  

7.830.1762
( )
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Ls s

m

Ae e
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= =
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The impulse responses of the process and the 
obtained FOPDT model are given in Fig.4. The 
square magnitude of  is also shown in Fig. 5. 
 

 
Fig. 4. Impulse responses of the process ( ( ))pg t and the 

model ( ( ))mg t  .  
 

 

Fig.5. Plot of 
2
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≈

= − versusω .
 

 
Simulations shows that the settling time impulse 
response for FOPDT model is approximately 10 
seconds, while for real model is about 20 seconds. In 
undershoot, when is used FOPDT model, more less 
than when it is implemented real model. For  



example function, undershoot in FOPDT model is 
%89.51 less than in real model.  
In the other hand, The area under the function error 

2

( )G jω
≈

 is  
2

0

( )S G j dω ω
∞ ≈

= ∫ can be a good indicating 

index of the closeness of the transfer functions of  
( )mG s to ( )pG s , in this method much less than other 

method, this means that high similarity of presented 
method and real systems. 
 

Process 
The 

name of 
method 

Obtained 
FOPDT 
model 
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paper 
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0.0377 

Table 2. Achieved results for 
2

0

( )S G j dω ω
∞ ≈

= ∫ from other 

methods. 
 
 For the purpose of trade off of the presented 
procedure in this paper to the other methods, the 
obtained result from this paper for the under 
considered process  with the obtained results from  
three other procedures are illustrated in Fig. 6 and 
Table 2.  
According to the Fig.5, it is seen that the area under 

the function 
2

( )G jω
≈

 in the presented procedure is 

less than the others. Table 2 can prove this fact 
further. 
 

 

Fig. 5. Obtained results for the graph of 
2

( )G jω
≈

versus ω

for different methods. 
 

6. Future work 
The quality of the resulting presented method is very 
dependent on the quality of model estimate. The use 
of parameters optimizations and obtained area 
method is planned to be extended to less error 
between model estimate and real function, which is 
capable to better approximate a much wider class of 
systems. The method of state form to solving 
differential equations with initial value or used a data 
base cloud be the next work. 
 

7. Conclusion 
The problem of optimal FOPDT model fitting to nth-
order all pole processes was formulated. It was 
shown that in general case the problem has a unique 
solution. By solving a set of nonlinear equationsby 
determining the parameters of FOPDT model in 
terms of the process parameters. To verify the 
proposed scheme numerically, the model was 
compared with two other identification methods 
which are the area based and the directed 
identification techniques, and also compared with a 
rather complicated method which used genetic 
algorithm for identification. The proposed 
methodshows better performance. This result is 
predictable because the showed technique is based on 
global optimization and but not on local 
optimization. 
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