
 

 

 

 

  

 

 

 

 

 

Abstract: This paper proposes Lagrangian relaxation 

method along with differential evolution algorithm to 

solve the unit commitment problem. Optimal setting of 

Lagrangian multipliers is obtained by incorporating 

Differential Evolution procedure. Spinning reserve, 

minimum up, and down time constraints, start up cost, 

and generation limit constraints are taken into 

consideration of Problem formulation. The proposed 

algorithm is tested on a 10-unit system and is compared 

with other methods reported in the literature. 
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Nomenclature 
t

iF          Generator fuel cost in quadratic form. 

2)( t
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t

iii

t

i PcPbaF   $/h. 

 ISO          Independent system operator       

                Iteration counter 

N     Total number of generator units. 

min,iP        Minimum real power generation of    

    unit  i (in megawatts). 

max,iP
      

Maximum real power generation of  

   unit i (in megawatts). 
t

iP     Real power generation of unit i at hour t  

   (in megawatts) 

  
   

      Optimal generation output of unit i at    

   hour  t (in megawatts). 
t

DP      Load demand at hour t (in megawatts). 

tR            Spinning reserve at hour t  

  (in megawatts). 
t

iST    Startup cost of unit i at hour t.  

T    Total number of hours. 

coldiT ,
   

Cold start hours of unit i (in hours). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

downiT ,   
Minimum down time of unit i (in hours). 

offiT ,
 

Continuously off time of unit i (in hours). 

oniT ,
 

Continuously on time of unit i (in hours). 

upiT ,
     

Minimum up time of unit i (in hours). 

tiU ,
   

Status of unit i at hour t (on = 1, off = 0). 

 
            Initial Lagrangian multiplier at hour t  

  ( in units/mwh, units/mw). 

 
             Lagrangian multiplier at hour t at  

       iteration k (in units/mwh, units/mw). 

                         Vector size 

  
                 Upper bound 

    
                    Lower bound 

                         Mutation factor 

                           Crossover probability 
    

                       Trial vector of current position 

   
                         Target vector of current position 

 

                        Abbreviations: 

iCSC          Cold startup cost of unit i. 

iHSC          Hot startup cost of unit i. 

 

    1. Introduction 

In most of the interconnected power systems, the power 

necessity is principally met by thermal power generation. 

There are several operating conditions based on constraints 

which have to satisfy the variable demand. In recent years, 

higher penetration of variable generation resources (such as 

wind power, solar power, and distributed generators) and 

more price-responsive demand participation have created 

new challenges to the unit commitment process, especially 

in the independent system operator (ISO) managed 

electricity markets. It becomes predominant for the ISOs to 

have an effective methodology that produces sturdy unit 

commitment decisions and ensures the system reliability in 
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the presence of increasing real-time uncertainty [1].It is 

preferable to use a favourable outcome operating strategy 

based on economic norm. In order to deliver reliable 

electric power to customers in a secured and economic 

manner, thermal unit commitment (UC) is considered to be 

one of optimum available options. Since the major 

component of generator operating cost is fuel, economy of 

operation is important in determining the allocation of 

generation of various load levels meeting the necessary 

operating constraints, this problem is treated as unit 

commitment problem. So the general intention of the UC 

problem is to minimize system total operating cost while 

satisfying all of the constraints so that a given security 

level can be met [11]. 

 A survey of literature on the UC methods 

divulge that various numerical optimization techniques 

have been employed to approach the UC problem[7].UC 

problem is a kind of complex, dynamic and restricted 

nonlinear programming which contains not only 

continuous variables but also integral variables[6].Many 

solution methodologies have been put forward in the 

literature for the UC problem. Lagrangian Relaxation 

technique is one of the prominent techniques. Lagrangian 

relaxation proceeds in three stages. In the first stage, the 

dual of the unit commitment is maximized with standard 

gradient techniques. The second part finds a dual solution, 

and in third step finds economic dispatch. This procedure 

gives good performance and has low execution time [14]. 

However, the method described does not address how to 

process the ramp rate constraints within the optimization 

problem. Later, it is extended to incorporate unit minimum 

capacity constraints and unit ramp rate constraints [13]. 

This improvised the Lagrangian algorithm but the rate of 

convergence is not increased. In order to improve the rate 

of convergence, LR algorithm is combined with Heuristic 

based methods which made the application of LR 

algorithm to modern day unit commitment challenges to 

achieve a precise and faster rate of convergence. The 

traditional methods includes priority list method (PL)], 

dynamic programming (DP), mixed- integer programming 

(MIP), branch and bound method (BB). These methods are 

simple and fast but they suffer from the convergence 

problem and poor solution. The other meta-heuristics 

methods adopted are genetic algorithm (GA) [2], simulated 

annealing (SA), evolutionary programming (EP), particle 

swarm optimization (PSO) [4] and ant colony optimization 

(ACO). These methods can execute complex problems 

with high quality resolution. The meta-heuristics approach 

provides a logical solution within a reasonable computation 

time. However, it has disadvantages that it cannot assure 

the optimality of the solution and that it is hard to evaluate 

the quality of the obtained solution [5]. Therefore, we must 

find a feasible solution by some heuristics. In this paper, an 

efficient algorithm differential evaluation is used along 

with LR to solve the UC problem. 

 

 2. Problem formulation 

The objective of unit commitment problem is to minimize 

the production cost over the scheduled time horizon 

(24hours) under the generator operational and spinning 

reserve constraints.  

 

The objective function to be minimized is                                                                            
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.                      3. Lagrangian relaxation 

 

The LR procedure solves the UC problem by relaxing or 

temporarily ignoring the coupling constraints and solving 

the problem as if they did not exist. The is done through the 

dual optimization  
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with respect to nonnegative   t   and µt whereas minimizing 

it with respect to other control variables in the problem, 

that is  
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   Where                                                    
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 Equations (2) and (3) are the coupling constraints across 

the units. In particular, what is done to one unit affects the 

other units. The Lagrangian function is rewritten as  
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The term         
                         

   

 
   

                    can be minimized separately for 

each generating unit, when the coupling constraints are 

temporarily ignored. Then, the minimum of the Lagrangian 

function is solved for each generating unit over the time 

horizon, that is  
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Subject to             
             

for t=1,...,T and the constraints in (5) 

On/Off decision criterion: 

In the Lagrangian relaxation method, the dual solution is 

obtained by using dynamic programming for each unit 

separately. This can be visualized in fig.1 showing the only 

two possible states for unit i (i.e,            ) at the 

    =0 state, the value of the function to the minimized is 

trivial (i.e., it equals zero), at the state where     =1, the 

function to be minimized is (the startup cost and the term 

        are dropped here since the minimization is with 

respect to  
  )         

    
   

 ] 

                                               

 

                Fig.1. Two-state dynamic programming 

To find the dual power, the term min      
    

   
 ] will 

be minimized by the optimality condition 
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The solution to this equation is  
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 The dual power is obtained  
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There are three cases to check   
     

 against its limits 

1) If   
             , then   

         

2) If         
      

≤       then   
    

      
 

3) If   
      

>        then   
 =       

Dynamic programming is used to determine the optimal 

schedule of each unit over the scheduled time period. More 

specifically, for each state in each hour, the on/off decision 

making is needed to select the lower cost by comparing the 

combination of the start-up cost and accumulated costs 

from two historical routes. The dual power calculated and 

within the limit, will be substituted in the new on/off 

decision criterion. 
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 To minimize the above term in (15) at each hour, if 

      
                     

   
          

   , this 

unit will be committed if it does not violate the minimum 

downtime constraint (    =1). Otherwise this unit will not 

be committed if it does not violate the minimum uptime 

constraint (    =0). 

                    4. Overview of DE Algorithm 

 

DE was presented as a heuristic optimization 

method that can be used to optimize nonlinear and non 

differentiable continuous space functions with real-valued 

parameters by Storn and Price. It is stochastic, population 

based algorithm. The major feature of DE is that it uses 

random distinct sampled pairs of object vectors to guide the 

mutation operation as a substitute for probability 

distribution functions as other EAs. The distribution of the 

distinct random sampled object vectors is resolved by the 

distribution of these objects vectors. Because the 

distribution of the object vectors is mainly determined by 

the corresponding objective function’s topography, the 

biases where DE tries to optimize the problem match those 

of the function to be optimized. This entitles DE to 

function effectively and more as a generic global optimizer 

than other EAs. 

According to Price [3], the main advantages of 

DE include fast  application and modification, simple and 

easy to implement,  effective global optimization 

capability, parallel processing nature, operating on floating 

point format with high precision, efficient algorithm 

without sorting or matrix multiplication, self-referential 

mutation operation, effective on integer, discrete, and 

mixed parameter optimization, ability to handle non 

differentiable, noisy, and/or time-dependent objective 

functions 



Differential Evolution (DE) is an evolutionary 

algorithm based on the populations of possible candidate 

solutions with three operators: mutation, crossover and 

selection. In DE, candidate solutions are identified by 

vectors and set of vectors generate the population. The 

basic notation is to form new vector by means of the 

weighted difference between the two population vectors. 

These three vectors are chosen randomly. Then the fitness 

of the new vector is checked. If the fitness of the new 

vector is better than the previous two, then exchange takes 

place. 

Initially population vector of size     are generated 

randomly in the D-dimensional search space over a 

generation G as follows: 

            
      

       
                                 16 

Where i = 1, 2, NP denotes the individual’s population 

index and j = 1, 2, D signifies the D-dimensional search 

space position.      is a uniformly distributed random 

number varies between 0 to 1. The upper bound and lower 

bound of the decision parameter are symbolized by   
     

and   
   respectively. 

                                                                 

 

                                                                         Fig. 2: Basic 

steps in Differential Evolution Algorithm 

Mutation:  

A mutant vector, for each target vector   
  is formed as:        
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 Where k, l, and m are randomly chosen vectors {1, 

2…..  }. Further k, l and m should be different so that Np 

> 4 is required. The mutation factor F is an experimentally 

chosen parameter that is used to regulate the amplification 

of the difference between two individuals to escape search 

stagnation.  

Crossover:                                                         

 After mutation, crossover is applied to the population. For 

each mutant vector, a trial vector is generated as follows: 
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Where     is a crossover probability and it is fixed 

parameter used to create trial vectors at all 

generations,      a newly generated random value for each 

i. 

Selection:  

The selection procedure compares the trial vector  

  
  and target vector    

 of current position and the vector 

with the better fitness are allowed to enter the next 

generation. 

   
       

          
        

   

                                     
                                             19                                       

 

                               5. proposed Method 

In this paper LR method is used to solve the UC problem. 

The Lagrangian multipliers are initialized and updated by 

the DE algorithm. Flowchart of the proposed method is 

presented below. 

                                      

 

    Fig. 3:  Flow chart of Solving UC Problem by DE   

                                      6. Results:   

The proposed algorithm for solving unit commitment 

problem was programmed in MATLAB of version 2010a 

environment with Pentium dual core, 3.2 GHz computer 

with 3 GB RAM. The test system consisting of ten power 

generating units and a time horizon of 24hours is taken 

from [12]. In DE the population consists of 40 individuals. 

In lambda iteration, the tolerance is set to 0.0001.The 

fitness value of each individual is calculated as the 

summation of the fuel cost, start up cost and the penalty 

value. The cost for power generation is calculated using 

lambda iteration based on the status of each power 

generating unit. For each hour depending on whether the 

start up is cold start or a hot start, the appropriate cost is 

added to the total cost. A penalty term is used if the hourly 

power demands plus a specific amount of reserve is not 

meant or if      and       constraints are violated. All 

parameter values are determined using the best settings 

formed as a result of a series of 10 runs. The mutation 



constant, F and crossover constant    taken are 0.5 and 0.8 

respectively.  

The fitness function is given below:  
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where    is the penalty factor for the dependent variables. 

The performance of  DE is compared with other methods 

resulted in optimizing the cost of ten generating units is 

shown in table 1,table 2 shows the load demand and DE 

solution of ten unit system and table 3 is the optimal setting 

of Lagrangian multipliers . The best overall cost obtained  

using DE is approximately $564180. The fitness variation 

and cost variations are shown in fig. 4 and fig. 5 

respectively for 100 iterations. The CPU run time for the 

following test system run is approximately 128 sec.  

                      

Fig.4: fitness vs. iterations    

                         

Fig. 5: cost vs. iterations 

 Table 1: comparison of total production costs ($)                                         

 

 

 

 

 

 

 

 

 

Table 2: load demand and DE solution of the ten unit 

system                      

 

 

Table 3: optimal setting of Lagrangian multipliers.                     

 

VII. Conclusion: 

The use of a differential evolution algorithm for the unit 

commitment problem is explored in this paper; the LR 

method is used to solve the UC problem. Optimal settings 

of the Lagrangian multipliers are obtained using DE 

algorithm. Simulations are carried out on a 10-unit test 

system. The performances of the different methods are 

compared with the proposed method. Results show the 

robustness of the proposed method.  

 

 

Un

its 

 

                                Total Production Cost($) 

DP 

(12) 

LR 

(8) 

GA 

(12) 

EP 

(10) 

SPL 

(9) 

DE 

10 

 

565825 565825 565825 565352 564950 564180 

No. 

Of 

hrs. 

Load Generator number No 

Of 

hrs 

Load Generator 

 Number 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 

01 700 1 1 0 0 0 0 0 0 0 0 13 1400 1 1 1 1 1 1 1 1 0 0 

02 750 1 1 0 0 0 0 0 0 0 0 14 1300 1 1 1 1 1 1 1 0 0 0 

03 850 1 1 0 0 1 0 0 0 0 0 15 1200 1 1 1 1 1 0 0 0 0 0 

04 950 1 1 0 0 1 0 0 0 0 0 16 1050 1 1 1 1 1 0 0 0 0 0 

05 1000 1 1 0 1 1 0 0 0 0 0 17 1000 1 1 1 1 1 0 0 0 0 0 

06 1100 1 1 1 1 1 0 0 0 0 0 18 1100 1 1 1 1 1 0 0 0 0 0 

07 1150 1 1 1 1 1 0 0 0 0 0 19 1200 1 1 1 1 1 0 0 0 0 0 

08 1200 1 1 1 1 1 0 0 0 0 0 20 1400 1 1 1 1 1 1 1 1 0 0 

09 1300 1 1 1 1 1 1 1 0 0 0 21 1300 1 1 1 1 1 1 1 0 0 0 

10 1400 1 1 1 1 1 1 1 1 0 0 22 1100 1 1 1 1 1 1 1 0 0 0 

11 1450 1 1 1 1 1 1 1 1 1 0 23 900 1 1 0 1 0 0 0 0 0 0 

12 1500 1 1 1 1 1 1 1 1 1 1 24 800 1 1 0 0 0 0 0 0 0 0 

Ho

ur 

Lambda 

( ) 

Mu 

(µ) 
Hour Lambda( ) Mu(µ) 

01 17.4119 4.4492 13 22.7296 13.9088 

02 17.4377 2.5 14 20.3766 8.4348 

03 17.4894 5.0906 15 19.9388 5.2353 

04 20.0184 4.1185 16 17.4522 6.8963 

05 17.5018 6.4276 17 17.4212 6.0896 

06 17.4832 4.2417 18 17.4832 9.149 

07 17.5142 3.9884 19 19.9387 12.4331 

08 19.9388 3.3649 20 22.7299 15 

09 20.3766 10.5754 21 20.3765 5.5085 

10 22.7299 14.8263 22 17.4708 7.4622 

11 23.2995 13.891 23 17.4553 6.5963 

12 26.2752 13.9741 24 17.4739 2.6161 
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