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A b s t r a c t : This paper developed a new method 
to solve the economic power problems (EPD) 
considering the valve-point effects in power systems. 
The method is based on a hybrid algorithm composed 
of FFA algorithm and micro Particle Swarm 
Optimization (MPSO) .The searching process starts 
with the FFA by initializing a group of random 
fireflies, then the search is pursued by the MPSO, 
then the best results (better than FFA) found from 
MPSO are also communicated to the FFA as an 
initial space search. 
The method suggested was applied to three cases 
different of power systems. The cost the property of 
convergence and the effectiveness of calculation of 
the method suggested were explored by the 
comparison with the recent existing techniques for 
problems of EPD to consider the valve-point effects. 
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(FFA), micro Particle Swarm Optimization (MPSO), 
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1. Introduction 
  
The economic power dispatch (EPD) problem has 
been one of the most widely studied subjects in the 
power system community since Carpentier first 
published the concept in 1962 [1]. The EPD problem 
is a large-scale highly constrained nonlinear non-
convex optimization problem [2]. To solve it, a 
number of conventional optimization techniques such 
as nonlinear programming (NLP) [3,4], quadratic 
programming (QP) [5], linear programming  (LP) 
[6], and Interior Point Methods [7], Newton-based 
Method [8],  Mixed Integer Programming [9], 
Dynamic Programming [10], Branch and Bound [11] 
have been applied. All of these mathematical 
methods are fundamentally based on the convexity of 
objective function to find the global minimum. 
However, the EPD problem has the characteristics of 
high nonlinearity and non-convexity. Applications of 

conventional optimization techniques such as the 
Gradient-based Algorithms are not adequate to solve 
this problem, because they depends on the existence 
of the first and the second derivatives of the objective 
function and on the well computing of these 
derivative in large search space. 
Examples of these attempt include   Tabu Search 
(TS) [12], Simulated Annealing (SA) [13], Genetic 
Algorithms [14], Evolutionary Programming (EP) 
[15], Artificial Neural Networks [16], Particle Swarm 
[17,18], Ant Colony Optimization (ACO) [19], 
Harmony Search Algorithm [20] . Their applications 
to global optimization problems become attractive 
because they have better global search abilities over 
conventional optimization algorithms. The Meta-
heuristic techniques seem to be promising and 
evolving, and have come to be the most widely used 
tools for solving EPD. For 
minimization/maximization problems the 
metaheuristic methods allow to find solutions closer 
to the optimum but with high cost in time.  
To solve this problem, we have combined two meta-
heuristic methods, the FFA and the MPSO. The 
searching process starts with the FFA by initializing 
a group of random fireflies,  then the search is 
pursued by the MPSO, then the best results (better 
than FFA) found from MPSO are also communicated 
to the FFA as an initial space search. The process is 
repeated than until the final solution is reached.  
The robustness of the proposed approach is tested 
and validated on the three cases different of power.  
The obtained results are compared with those in 
literature. The rest of this paper is organized as 
follows: Section 2 considers the Problem 
Formulation and the optimization under equality and 
inequality constraints. Section 3 discusses an 
explanation of the firefly algorithm (FFA).Section 4 
discusses Particle Swarm Optimization (PSO).  The 
approach (FFA-MPSO) is presented in section 
5.Section 6 presents simulation results and discussion 
on solution quality. Conclusions are summarized in 



Section7. 

2. Problem Formulation 
2.1. Conventional EPD problems  

    The goal of conventional EPD problem is to solve 
an optimal allocation of generating energy in a power 
system. The power balance constraint and the 
generating power constraints for all units should be 
satisfied. While satisfying the power balance equality 
constraint and several inequality constraints on the 
system... The EPD problem is generally formulated 
as follows: 
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Where g(x, u) is the typical equality constraint, h(x, 
u) is inequality constraints. x is the vector of state 
variables consisting of slack bus power PG1, load bus 
voltages VL1 , reactive power generator outputs QG1 

and transmission line loading SL1. Hence x can be 
expressed as: 
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Where NPQ, Ng and NL are: the number of load 
buses, the number of generators and the number of 
transmission lines, respectively. 
u is the vector of control variables consisting of 
generator real power outputs except at the slack bus 
PG  , generator voltages VG , transformer tap settings 
T and reactive power injections QC . Hence, u can be 
expressed as 
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Where nt is the number of regulating transformers 
and nc is the number of VAR compensator.    

2.2. Objective Functions 
2.2.1. Minimization of Fuel cost 

The goal of conventional EPD problem is to find an 
optimal allocation of generating powers in a power 
system. The power balance constraint and the 
generating power constraints for all units should be 
satisfied. In other words, the EPD problem (see fig. 
2) is to find the optimal combination of power 
generations which minimize the total fuel cost while 
satisfying the power balance equality constraint and 
several inequality constraints on the system [21]. The 
total fuel cost function is formulated as follows: 
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Where )( GPf  is the total production cost in $/hr; 

)( Gii Pf  is the fuel cost function of unit i in $/hr;  

ai , bi and ci are the fuel cost coefficients of unit i;  

GiP  is the real power output of unit i in MW;  

2.2.2. Non-smooth power economic dispatch 

The fuel function   is roughly expressed like 
quadratic function for each unit of generation in 
convex economic problems. This case involves 
bringing closer calculation and the results in a 
solution erroneous, consequently. So of various types 
of physical and operational constraints are added in 
the problem for the correction of the optimal 
solution, the problem transforms itself into problem 
of forced optimization nonlinear. Economic dispatch 
problem with the effect of point of valve is one of 
these problems, which is classified like non-convex 
problem and it is very difficult to find an optimal 
solution to him. 
The inclusion of the effect of point of valve in the 
cost of fuel of the unit of generation provides a more 
suitable representation compared to the cost of fuel. 
While the point of valve is finalized with rises, the 
performance of fuel function includes a higher 
nonlinear series. For this reason, as for the study 
aimed at considering the effects of point of valve, a 
non-convex function is used. 

In reality, the objective function has non 
differentiable points according to valve point loading 
effects. Therefore, the objective function should be 
composed of a set of non-smooth cost functions [22]. 

Multi-valve steam turbines based generating units are 
characterized by complex non-linear fuel cost 
function. The dotted line in the figure.1 is the 
variation of the performance cost function taking into 
accounts the valve effects [23]. To take account for 
the valve-point effects, sinusoidal terms are added to 
the quadratic cost functions as follows: 
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Where di, ei are: the cost coefficients for ith generator 
reflecting valve-point effects.

  



Fig. 1. Input–output characteristics of the 
generation units. 

2.2.3. Minimization of real power loss 
The main objective is to minimize the network active 
power loss while satisfying a number of operating 
constraints. The objective function may be expressed 
as: 
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Where gk is  the conductance of a transmission line k 
connected between ith and jth bus, Vi , Vj , 

iα , jα are 

the voltage magnitudes and phase angles of i th and jth 
bus respectively, nl is the total number of 
transmission lines. 
2.3. Problem constraints 
2.3.1. Active power balance equation 
For power balance an equality constraint should be 
satisfied. The generated power should be the same as 
total load demand added to the total line losses. It is 
represented as follows: 
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The exact value of the system losses can be 
determined by means of a power flow solution. The 
most popular approach for finding an approximate 
value of the losses is by way of Kron’s loss formula 
as given in equation (5), which represents the losses 
as a function of the output level of the system 
generators. 
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Where Bij is the transmission loss coefficient, Pi ,  PJ 
the power generation of ith and jth units. 
B0i is the ith element of the loss coefficient vector 
B00 is the constant loss coefficient. 

∑
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GiP  is the total system production; 

Pload : is the total load demand.   
PL : is the total transmission loss of the system in 
MW; 
NG  is the number of generator units in the system; 
Equality constraints on real and reactive power at 
each bus are given by equations (14) and (15). 
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where i =1, 2,..., nb, nb is the number of buses; QGi is 
the reactive power generated at the ith bus; PDi and 
QDi are the bus real and reactive load, respectively; 
 Gij and Bij are the transfer conductance and 
susceptance between bus i and bus j, respectively; V i   

and V j    are the voltage magnitudes at bus i and bus j, 
respectively; and αi and αj 

 are the voltage angles of i 
and bus j, respectively. 
2.3.2. Active power generation limits 
Generation constraints: Generator voltages, real 
power outputs and reactive power outputs are 
restricted by their lower and upper bounds as 
follows: 
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Transformer constraints: Transformer tap settings are 
restricted by their minimum and maximum limits as 
follows: 

maxmin
iii TTT ≤≤

                                              
(17) 

Shunt VAR constraints: Reactive power injections at 
buses are restricted by their minimum and maximum 
limits as: 

maxmin
CiCiCi QQQ ≤≤                                            (18) 

Security constraints: These include the constraints of 
voltage magnitudes at load buses and transmission 
line loadings as follows: 

maxmin
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3. Firefly Algorithm (FFA)  

Fireflies (lightning bugs) use their bioluminescence 
to attract mates or prey. They live in moist places 
under debris on the ground, others beneath bark and 
decaying vegetation. Firefly Algorithm (FFA) was 
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developed by Yang Xin-She at Cambridge University 
in 2008 [24]. It uses the following three idealized 
rules:  
1) All fireflies are unisex so that a firefly will be 
attracted to other fireflies regardless of their sex [25]. 
2) Attractiveness is proportional to their brightness; 
thus for any two flashing fireflies the less bright will 
move towards the brighter one [26]. The 
attractiveness is proportional to the brightness and 
they both decrease as their distance increases. If there 
is no brighter firefly than a particular one it will 
move randomly. 
3) The brightness of a firefly is affected or 
determined by the landscape of the objective 
function. On the first rule, each firefly attracts all the 
other fireflies with weaker flashes [27].  
The brightness of a firefly is affected or determined 
by the landscape of the objective function. For a 
maximization problem the brightness can simply be 
proportional to the value of the objective function. 
Other forms of brightness can be defined in a similar 
way to the fitness function in genetic algorithms 
based on these three rules. 
 
3.1 Attractiveness  
 
The light intensity I varied with distance r [28] is 
expressed by the following equation: 
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As a firefly’s attractiveness is proportional to the 
light intensity [29] seen by adjacent fireflies, we can 
now define the attractiveness β of a firefly by: 
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Where I is the light intensity, I0 is the original light 
intensity, γ  is the light absorption coefficient, 

0β  is 

the attractiveness [30]. 

3.2 Distance and Movement  

The distance between any two fireflies i and j at xi 
and xj is the Cartesian distance given by  as follows: 
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Where xik is the kth component of the spatial 
coordinate xi of ith firefly the movement of a firefly i 
is attracted to another more attractive firefly j is 
determined by   
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Where the first term is the current position of a 
firefly [31], the second term is used for considering a 
firefly’s attractiveness to light intensity seen by 
adjacent fireflies and the third term is used for the 
random movement of a firefly in case there are not 
any brighter ones. 
The coefficient α is a randomization parameter 
determined by the problem of interest, while rand is a 
random number generator uniformly distributed in 
the space (0,1) [32]. As we will see in this 
implementation of the algorithm, we will use β0 =0.1, 
α Є (0,1) and the attractiveness or absorption 
coefficient γ=1.0 which guarantees a quick 
convergence of the algorithm to the optimal solution 
[33]. 

4. Particle Swarm Optimization Method  

PSO is a promising evolutionary technique which has 
some advantages over other similar optimization 
techniques, PSO is easier to implement and there are 
fewer parameters to adjust, and its algorithm requires 
less computation time and less memory. In addition, 
PSO is flexible and thus,   can easily be handled with 
objective functions. But PSO has also some defects, 
such as premature convergence. To overcome this 
problem, PSO is associated [34] with another 
algorithm that is close, namely the Genetic algorithm 
[35]. The PSO was originally developed by Eberhart 
and Kennedy in 1995 [36, 37] using a population-
based stochastic algorithm. Similarly to genetic 
algorithms [38], and evolutionary algorithm 
approach, the PSO is an evolutionary optimization 
tool of swarm intelligence field based on a swarm 
(population), where each member is seen as a 
particle, and each particle is a potential solution to 
the problem under analysis. Each particle in PSO has 
a randomized velocity associated to it, which moves 
through the space of the problem. However, unlike 
genetic algorithms, PSO does not have operators, 
such as crossover and mutation. PSO does not 
implement the survival of the fittest individuals; 
rather, it implements the simulation of social 
behavior [39]. PSO, however, allows each particle to 
maintain a memory of the best solution that it has 
found. The mathematical model for PSO is as 
follows. 
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 Where 

Vi
t: Velocity at iteration t the ith particle in the swarm 

Xi
t: Position at iteration t the ith particle in the swarm 



Pbesti: called the local leader or the personal best 
position, represents the best position found by the ith 
particle itself so far; 
gbest: called the global leader or the global best 
position, represents the global best position found by 
neighbors of this particle so far;  
i: number of particles 
w : inetia weight factor 
c1 , c2: acceleration constant 
rand1, rand2 : uniform random value in the range 
[0.1] 
The use of linearly decreasing inertia weight factor w 
has provided improved performance in all the 
applications. Its value is decreased linearly from 
about 0.9 to 0.4 during a run. Suitable selection of 
the inertia weight provides a balance between global 
and local exploration and exploitation, and results in 
less iteration on average to find a sufficiently optimal 
solution. Its value is set according to the following 
equation: 
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Where wmax, wmin: are both random numbers called 
initial weight and final weight respectively 
itermax:

 
The maximum iteration number 

iter : The current iteration number 

The procedure of particle swarm optimization 
technique can be summarized in the Figure 2. 

            Fig. 2  Flow chart of PSO  

 

Micro–Particle Swarm Optimization (MPSO) is a 
PSO with the size, which is considered to be rather 
small. Typically, the population evolves and 
converges (locally) in a few iterations (about 4–5) 
because of the small population size. 

5. Firefly Algorithm-micro Particle Swarm 
Optimization (FFA-MPSO) 

The balance between exploration and exploitation is 
achieved with approach FFA-MPSO. The searching 
process starts with the FFA by initializing a group of 
random fireflies, then the search is pursued by the 
MPSO, the results found by the FFA are used as 
starting points for MPSO. 
As we saw in the previous section, the Micro-Particle 
Swarm Optimization (MPSO) works with a small 
number of populations is designed to best exploit the 
search space with low time of convergence. 
Then, the best results (better than FFA) found from 
MPSO are also communicated to the FFA as an 
initial space search. The process is repeated than 
until the final solution is reached. Fig 2, 3 and 4 
shows the mechanism search of the combined 
global–local search without communication and 
considering communication. The following steps 
summarize description of the proposed algorithm: 
Step 1. Run FFA (with the max to iterations) 
Step 2. The best control variables optimized based 
FFA are communicated to MPSO and considered as 
the initial research space (with the max to iterations). 
Step 3. Communicate the best solution found from 
MPSO to FFA and considered as the initial research 
space. 
Step 4. The process is repeated than until the final 
solution is reached (the solution is repeated). 
This approach can quickly and accurately find an 
optimum solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Search space with FFA-MPSO 
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6. Simulation results 
The proposed FFA-MPSO approach based on global 
and local search is developed in the Matlab 
programming language using 7.04 version. In order 
to validate the robustness of the proposed method, 
three networks were been considered, the first one 6-
bus with 3 generators for a load demand of 210 MW, 
the second one with IEEE 14 buses and 5 generators 
for a load demand of 259 MW, the third one with 
IEEE 30 buses and 6 generators for a load demand of 
283.4 MW and with two cases, with valve point 

effect and without valve point effect. The generators 
data and   B-coefficients are shown respectively in 
Tables 1, 4, 7 [40, 41]. 

6.1.   6 bus 3 generators system 

Table.1 Cost coefficients, active power generation limits 
of the generation units and transmission loss coefficients 
 ai

 
bi

 
ci

 
di

 
ei

 
PGi

min PGi
max 

PG1 0.00533 11.669 213.1 130 0.0635 50 200 
PG2 0.00889 10.333 200 90 0.0598 37.5 150 
PG3 0.00741 10.833 240 100 0.0685 45 180 

 Load System Input data Pd,N, Pmin, Pmax, ai, bi, ci… 

Generate initial population of fireflies, nf 

Define α and γ and ß (Firefly 
parameters) Max. generation, Itermax 
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Fig.4. Flow chart for EPD using FFA-MPSO
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6.1.1. Case 1: quadratic fuel cost minimization 

As seen in Table 2, since the Three-Unit system only 
has 3 units, it is very simple; all the evolutionary 
methods get the same solution. From the Table, we 
can see that for the Three-Unit system, the proposed 
FFA-MPSO method can get the best solution among 
the FFA and MPSO in the literatures. The total 
generation cost from the FFA-MPSO method is 
reduced at a value of 3110.661462 comparing to the 
FFA method, and it is also reduced comparing to the 
MPSO method. 
 

Table 2 
Optimization results of FFA-MPSO approach for 6 bus 3 

generator system 
 Best (cost) 

MPSO 
Best (cost) 

FFA 
Best (cost) 
FFA-MPSO 

PG1(MW) 53.759002 51.416361 50.073271 
PG2(MW) 69.969447 72.448310 73.878281 
PG3(MW) 90.967464 90.921083 90.878914 
Fuel 
cost($/h) 

3113.887331 3111.787641 3110.661462 

Real loss 
(MW) 

4.6959 4.7858 4.8305 

T(S) 0.1258 0.2025 0.01014 

By exploiting the figure5, we can see that 
convergence is reached after 80 iterations and the 
best cost is equal to 3110.661462 $/h, As seen in 
Table 2, in the Three-Unit system, the CPU times of 
the FFA-MPSO method is a little less than the FFA 
method and MPSO, it is worth 0.01014 S .The FFA-
MPSO method can get a better computation. 

 
Fig.5. The function cost values in different iterations for 

FFA-MPSO method (IEEE-6 BUS) 

6.1.2. Case 2: quadratic fuel cost Curve with Sine 
Components  

in this case, only  the cost curves of the generators  
are replaced by  valve point loading effects  .The 
objective function is to be expressed with the model 
to Eq(8).  
The best results of the proposed approach compared 
with other methods are illustrated in Table 3 which 
shows clearly the superiority of the proposed 
approach. 
 

 
Fig.6. The function cost values (with valve point effect) 
in different iterations for FFA-MPSO method (IEEE-6 

BUS)

 

 

 

 



Table.3 Optimization results of FFA-MPSO approach with valve point effect for 6-bus.

Methods PG1 
(MW) 

PG2 
(MW) 

PG3 
(MW) 

Loss 
(MW) 

Cost 
($/h) 

T 
(S) 

GA [42] 53.2604 88.9645 74.7693 6.9939 3252.46 1.0310 
GA-APO [42] 61.6467 95.1632 60.5402 7.3460 3341.77 0.812 
NSOA [42] 50.0000 86.0678 79.7119 5.779 3205.99 0.0140 
PSO[43] 50.4739 74.1958 90.8627 5.5324 3189.82 0.3117 
MSG-HP [43] 50.000 74.7428 90.7680 5.5117 3188.146 0.2469 
IABC-LS[44] 50 74.3459 90.8604 5.2063 3185.2942 0.008 
IABC[44] 50.0028 74.5208 90.6764 5.2001 3185.8511 0.007 
NHM [45] 50 90 75.87 5.87 3202.25 0.013 
GA [45] 53.26 88.96 74.76 6.99 3252.45 1.031 
HGA[45] 54.45 115.68 47.58 7.71 3294.80 0.812 
FFA 99.4739 37.50000 78.8057 5.7796 3166.312609 0.258 
FFA-MPSO 50.0000 37.50000 128.2797 5.7797 3161.4546 0.01125 

                         Not heuristic method (NHM) 
 
We saw the utility to draw the attention to the two 
last lines of table 3, it is very clear that this 
hybridization FFA-MPSO with valve point effect for 
6-bus exceeds the other method exposed in the same 
table, the cost in this case is very reduced while 
arriving at a value of 3161.4546 ($/h) much better 
than the others.  
CPU times of the FFA-MPSO method is a little less 
than the FFA method, it is about 0.01125 S and 
convergence is reached after 100 iterations. 
 
Table.4 Cost coefficients, active power generation 
limits of the generation units and transmission loss 

coefficients. 
 

ia  ib  ic  id  
ie  min

Gip  max
Gip  

PG1 0.0016 2 150 50 0.0630 50 200 
PG2 0.01 2.5 25 40 0.0980 20 80 
PG3 0.025 1 0 0 0 15 50 
PG6 0.00834 3.25 0 0 0 10 35 
PG8 0.025 3 0 0 0 10 30 
B-Coef        
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Let us return now to a system with IEEE 14 buses 
and 5 generators for a load demand of 259 MW, let 
us consider two cases (with valve point effect /and 
without valve point effect ): 

6.2.1. Case 1: quadratic fuel cost minimization 
(without valve point effect): 

in table 5, we notice that the two methods MPSO 
and FFA are very robust, the best cost reaches a 
value of 829.597328 $/h with the first method, and a 

lower value of 827.286908 $/h with the second 
method while arriving at a value much better of 
826.975457 $/h with the hybridization of the two 
methods. 
CPU times of the FFA-MPSO method is a little less 
than the FFA method and MPSO, it is worth 
0.008569 S. The FFA-MPSO method can get better 
computation efficiency. 
 

Table 5 
Optimization results of FFA-MPSO approach for IEEE-

14 bus. 

 
Best 
(Cost) 
MPSO 

Best 
(cost) 
FFA 

Best 
(cost) 
FFA-
MPSO 

PG1 (MW) 196.952247 199.812783 199.987575 
PG2 (MW) 29.370439 31.132178 30.724979 
PG3 (MW) 19.732174 16.115501 16.366466 
PG8 (MW) 10.599661 10.427850 10.081301 
PG11(MW) 10.389557 10.297221 10.225370 
Fuel cost 
($/h) 

829.597328 827.286908 826.975457 

real loss 
(MW) 

8.0441 8.7855 8.3857 

T(S) 0.1212 0.3256 0.008569 

 
Fig.7. The function cost values in different iterations for 

FFA-MPSO method (IEEE 14 BUS) 



From Fig. 7, we can get that, for all the systems, the 
ascend speeds at the beginning are high, the FFA-
MPSO method can reach to the optimum solution 
quickly about 100 iterations. FFA-MPSO method is 
demonstrated to have a better convergence property. 

6.2.2. Case 2: quadratic fuel cost Curve with Sine 
Components (with valve point effect): 

Let examine the table 6 and let use the technique 
with valve point effect, it is very easy to judge that 
the FFA-Method is very effective compared to the 
other methods: NHM [58], MSG-
HP[53],PSO[53];NSOA [54]GA [54],GA-APO [54]. 
For the method FFA-MPSO, the cost reached a 
splendid value of 834.0395 $/h in a time of 
convergence of 0.00985 S, convergence keeps the 
same number of 100 iterations. 

 
Fig.8. The function cost values (with valve point effect) 

in different iterations

 
Table 6. Comparison results of different methods for IEEE-5 machines 14-bus system for PD= 259 MW

Methods 
PG1 
(MW) 

PG2 
(MW) 

PG3 
(MW) 

PG8 
(MW) 

PG11 
(MW) 

Loss (MW) Cost ($/h) T(S) 

NHM [45] 150 80 18.32 10 10 9.32 896.68 0.015 

MSG-HP [43] 199.6923 20.0000 20.8157 15.5504 12.5069 9.5654 834.363 0.4617 

PSO [43] 197.4696 20.0000 21.3421 11.6762 17.7744 9.2623 836.4568 0.3484 
NSOA [42] 181.129 46.7567 19.1526 10.1879 10.7719 8.9977 905.5437 0.0150 
GA [42] 172.765 26.6212 24.8322 23.4152 19.1885 7.8250 926.5530 0.3910 
GA-APO [42] 172.765 26.6212 24.8322 23.4152 19.1885 7.8250 926.5530 0.3910 
FFA 149.7331 52.0570 22.0184 29.7806 14.9760 9.5651 874.6183 0.398 
FFA-MPSO 199.59965 20.0000 20.36441 17.692815 10.9084 9.5653 834.0395 0.00985 

Not heuristic method (NHM) 

We pass now to the application of this 
hybridization with the two cases on the system 
with IEEE 30 buses and 6 generators for a load 
demand of 283.4 MW 
 
 
6.3. 30-bus 6 generators system 

Table.7 Cost coefficients, active power generation 
limits of the generation units and transmission loss 

coefficients 
 

ia  ib  ic  id  
ie  min

Gip

 

max
Gip

 

PG1 0.0016 2 150 50 0.0630 50 200 
PG2 0.01 2.5 25 40 0.0980 20 80 
PG3 0.025 1 0 0 0 15 50 
PG6 0.00834 3.25 0 0 0 10 35 

PG8 0.025 3 0 0 0 10 30 
PG13 0.025 3 0 0 0 12 40 
B-
Coeffici
en 
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6.3.1. Case 1: quadratic fuel cost minimization 
(without valve point effect): 

While referring in table 8, the best cost in the 
MPSO approach recorded a value of 918.620060 
$/h, the best cost in the FFA approach recorded a 
value of 917.730397 $/h and finally the FFA-
MPSO approach with its best value of 916.560132 
$/h always in a famous time of 0.00925 S.                 

 



Table 8 
Optimization results of FFA-MPSO approach for IEEE 

30 bus. 

 
Best 

(Cost ) 
MPSO 

Best 
(cost) 
FFA 

Best 
(cost) 

FFA- MPSO 

PG1 (MW) 198.295421 199.845008 199.698106 
PG2 (MW) 41.390760 36.886954 41.489712 
PG3 (MW) 16.111724 16.916511 19.156173 
PG8 (MW) 13.008410 13.746261 10.013532 
PG11(MW) 10.074959 13.382660 10.286364 
PG13(MW) 15.869036 13.890634 14.382727 
Fuel cost 
($/h) 

918.620060 917.730397 916.560132 

real loss 
(MW) 11.3503 11.2680 11.6266 

T(S) 0.025 0.0324 0.00925 

 

 
Fig .9. The function cost values in different iterations 

for FFA-MPSO method (IEEE 30 BUS) 

From Fig. 9 in this case, we can get that, for all the 
systems, the ascend speeds at the beginning are 
high, the FFA-MPSO method can reach to the 
optimum solution about 60 iterations. 

6.3.2. Case 2: quadratic fuel cost Curve with 
Sine Components (with valve point effect): 
 

 
Fig.10. The function cost values (with valve point 

effect) in different iterations for FFA-MPSO method 
(IEEE 30 BUS) 

 
The two last lines of the table 9 shows well that the 
approach FFA-MPSO keeps the first class 
compared to the other methods in the literature , 
the cost is of 911.4744 $/h , CPU times of the 
FFA-MPSO method is a little less than the FFA 
method and MPSO , it is worth 0.01 S in a very 
reduced number of iteration of 65.

 

 
Table.9 Comparison results of different methods for IEEE-30 bus system for PD= 283.4 MW. 

Methods PG1 
(MW) 

PG2 
(MW) 

PG3 
(MW) 

PG8 
(MW) 

PG11 
(MW) 

PG13 
(MW) 

Loss 
(MW) 

Cost 
($/h) 

T 
(S) 

GA [42] 150.724 60.8707 30.8965  14.2138 19.4888  15.9154  8.7060 996.0369  0.5780 
GA-APO [42] 133.9816 37.2158  37.7677  28.3492  18.7929  38.0525  10.7563 1101.491  0.156 
NSOA [42] 182.478  48.3525  19.8553  17.1370  13.6677  12.3487  10.4395 984.9365  0.0150 
PSO [43] 197.8648  50.3374  15.0000  10.0000  10.0000  12.0000  11.8022 925.7581  0.3529 
MSG-HP[43] 199.6331 20.0000 23.7624 18.3934 17.1018 15.6922 11.1830 925.6406 0.6215 
NHM [45] 199.07 20 15 35 10 12 7.67 917.34 0.015 
FFA 199.6525 20.0000 20.05800 18.0832 13.5375 21.2579 9.1891 919.2158 0.045 
FFA-MPSO 199.5996 20.0000 21.2272 24.1004 13.0972 13.0454 7.6698 911.4744 0.010 

Not heuristic method(NHM) 

7. Conclusion 

This paper has employed a hybrid method by mixing 
the FFA with the MPSO for solving the EPD 

problems with valve-point effects. The feasibility of 
the FFA-MPSO method was tested for three different

 EPD test cases considering the valve-point effects 
and a comparison with the results obtained using the 

FFA algorithm and the results reported in recent 
literatures was accomplished. The economic effect, 



convergence property and computation efficiency of 
the proposed method have been explored through the 
comparison with the recent techniques for the EPD 
problems considering the valve-point effects. The 
results show that the proposed hybrid FFA-MPSO 
method is very effective and it is very compatible for 
the EPD problem  
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