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Abstract: Photovoltaic system normally requires maximum 
power point tracker as its output varies based on solar 
irradiance and temperature. In order to extract maximum 
power from PV, a supervised online coactive neuro fuzzy 
inference system based Maximum Power Point Tracking 
Technique (MPPT) is proposed in this paper. This MPP 
controller is executed in a soft switched IBC and it is 
compared with the conventional P&O and Fuzzy MPPT in 
terms of maximum power ratio, transient time, overshoot. 
In order to validate the effectiveness of the proposed 
MPPT control, two set of operating conditions are taken 
for analysis such as constant irradiance and step varying 
irradiance. The overall system is modeled using MATLAB 
/ simulink Toolbox. Finally, the proposed supervised 
online CANFIS based MPPT is executed using DSP 
processor and the simulation results are verified 
experimentally.   
 
Keywords: Photovoltaic system, MPPT, CANFIS,IBC and 
irradiance. 
 
1. Introduction 

 
In the current scenario, as the population is 

increasing day by day, the electrical power demand is 
also increasing, but the conventional sources such as 
coal, diesel and gas are depleting. The need for 
renewable energy source becomes vital in this 
context. Many renewable energy technologies today 
are reliable, well developed and cost competitive 
with the conventional fuel generators. The cost of 
renewable energy technologies is on a falling trend as 

demand and production increases and the study of 
various alternate sources have gained momentum [1]. 

Among the renewable sources, Photovoltaic (PV) 
generation is important as it offers a lot of 
advantages such as low fuel costs, less pollutant, 
minimum maintenance and   no noise [2]. 
Applications of PV have been widely employed for 
power generation, satellite power system, solar 
vehicle and solar battery charging stations. The major 
drawback of PV is the low efficiency of energy 
conversion when compared with other alternative 
resources. PV is a non-linear source that depends on 
irradiation and temperature in its process. Maximum 
power point tracking (MPPT) is developed to pull out 
the maximum power from the PV array [3-7].  

 In the literature, perturb and observe (P&O) 
algorithm is the most accepted and used extensively 
since it is the simplest algorithm and easy to 
implement when compared with other methods [8-
11]. Moreover, it has some drawbacks such as poor 
tracking of maximum power due to abruptly change 
in irradiance, produces an oscillation around the 
maximum power point at low irradiance level, due to 
this it is unable to extract maximum power and 
response time of this algorithm is very slow. Another 
important drawback of this algorithm is its 
incapability to perform well in noisy environment. In 
such PV system, noise factor exists and must 
critically be measured as these have imperative effect 
on the decisions executed by the MPPT algorithm. 



 
Fig. 1. Block diagram of Supervised online Coactive Neuro Fuzzy inference System based MPPT for PV system 

Recently, artificial intelligence such as fuzzy 
logic, neural network and ANFIS based MPPT 
algorithms have been developed for PV system [12-
13]. The advantages of using these methods are quick 
response time and more stable when compared to the 
traditional algorithms. Adaptive neuro fuzzy 
inference system is the most accepted among them 
because it is simple and realistic to be implemented. 
It has been implemented with significant 
improvement in efficiency. 

ANFIS algorithm is superior when compared with 
Fuzzy logic and P&O algorithm, but it does not 
locate accurate maximum power point. Because, 
ANFIS control is trained in offline mode. There is a 
problem in offline training, as it requires large 
amount of representative input and output 
data.Training process is a timing consuming process, 
during training phase, some of the input and output 
data are not trained in this algorithm and it leads to 
decision making problem in maximum power point 
tracking.  

To overcome the above mentioned drawbacks, a 
supervised online coactive neuro fuzzy inference 
system based MPPT algorithm is presented in this 
paper   for improving maximum power point tracking 
performance of the PV system. The proposed control 
scheme consists of current balance control and 
MPPT control. Figure 1 shows the block diagram of 
the entire PV system. The maximum power point 
(MPP) power is calculated by the proposed MPPT 
using detected irradiance and temperature. Calculated 
MPP power is compared with the measured power 

from PV panel and used as an input of the power 
controller i.e., PI controller. The output of the power 
controller is used as a current reference for the next 
stage. The current reference is divided by the number 
of stage. This current reference is compared with the 
current of each stage, and the current error is used as 
an input of current controller. The gate signal for 
interleaved soft switched boost converter is generated 
by comparing the carrier signal and the output of the 
current controller. The proposed MPPT algorithm is 
analyzed and compared with the conventional P&O 
[11] and Fuzzy Logic algorithms [12] under different 
irradiance conditions. A prototype of the IBC is built 
and the proposed MPPT algorithm is tested and the 
results are validated. 

The paper is organized as follows:  mathematical 
modeling of PV array is presented in section 2. Basic 
operation of soft switched interleaved boost 
converter is presented in section 3 and supervised 
online coactive neuro fuzzy inference system based 
MPPT is presented in section 4. Simulation results 
are presented in section 5 and section 6 discusses 
experimental results. Concluding remarks is outlined 
in Section 7.   

 
2. Mathematical model for a PV array 
  

The equivalent circuit model of PV cell is shown 
in Figure 2 and the current flow through the diode 
can be expressed by Shockley’s diode equation as, 



 
Fig.2. Equivalent circuit of PV cell 

 

ௗܫ = ௦ܫ ൬݁
೜(ೇశ಺ೃೞ
ಲೖ೅೎ − 1൰   (1) 

 
Where,  
IS - The diode reverse saturation current (Amps), 
V - The solar cell output voltage (Volt),  
q - The charge of one electron, Tc -the solar cell 
temperature in Kelvin, k -Boltzmann constant 
A - The junction perfection factor, which 
 determines the diode deviation from the ideal p-n 
junction. 
Current ISC in Figure 2 indicates the photocurrent 

and it is dependent upon the light spectrum and the 
spectral response of the solar cell. The latter is 
according to the number of electron-hole pairs 
collected per incident photon, and thus depends on 
the optical absorption coefficient and diffusion length 
of the charge carriers [14]. The dependence of the 
photocurrent on the irradiance and cell temperature 
can be expressed by the following empirical 
equation, 

 
ௌ஼ܫ = ௌ஼ோܫ} + ݇௜( ௖ܶ − ௥ܶ)} ீ

ଵ଴଴
  (2) 

 
Where,  
ISCR - the short-circuit current generated at “Tr” 
 which is the reference temperature in Kelvin. 
ki - The temperature coefficient of the short- 
circuit current and G -The irradiance in W/m2. 
 
Reverse saturation current (IS) is correlated to 

temperature. Higher temperature raises the 
concentration of the intrinsic charge carriers and as a 

result results in higher carrier recombination. As a 
result rising temperature raise the reverse saturation 
current:  
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Where, Ior - The diode reverse saturation current 

at Tr and Eg - The band gap energy.If Nominal 
Operating Cell Temperature (NOCT) is given Tc is 
defined as 

 

஼ܶ − ௔ܶ = ேை஼்ିଶ଴
଴.଼

௞ௐ        ܩ
௠మ   (4) 

 
However a basic form can be used as, 
 
஼ܶ = ௔ܶ + 0.2 ×  (5)    ܩ

 
Taking into account the internal resistance RP and 

RS , we have the cell current expressed as 
 

ܫ = ௌ஼ܫ − ௌܫ ቆ݁
൤೜൫ೇశ಺ೃೄ൯ಲೖ೅೎

൨ − 1ቇ − ௏ାூோೞ
ோು

 (6) 

 
The above model can be extended to characterize 

PV array with Np cells in parallel and Ns cell in series 
so we have,  
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ோೄ೓೅

ቁ = ݊௣ܫௌ஼ − ݊௣ܫ௦൮݁
቎
೜ቀ ೇ೙ೞ

శ಺ೃೄ೅ቁ

ಲೖ೅೎
቏

− 1൲ −
௏ ௡ೞൗ

ோೄ೓೅
 (7) 

 
Where, 

ܴௌ௛் =
݊௣
݊௦

× ܴ௉     ܽ݊݀  ܴௌ் =
݊௦
݊௣

× ܴ௦  

 
The above model illustrates that an array of PV 

cells is a nonlinear device having its characteristics 
depending on the solar irradiance and ambient 
temperature [15-16]. And power output of the PV 
array is given by, 

 
௉ܲ௏ = ܫ × ܸ     (8) 

 



 
Fig.3(a). Three stages interleaved soft switched boost converter 

 
Fig.3(b). Switching logic of three stages interleaved soft switched boost converter 



 
Fig.3(c). Mode of operation of three stage interleaved soft switched boost converter 

3. Interleaved soft switched boost converter  
 

DC-DC boost converters are employed as 
interfacing circuit for the PV array with MPPT 
control to provide maximum power to the load [17]. 
Boost converter have simple topology, high power 
density, fast transient response and continuous input 
current and hence, this topology is used for different 
power electronics applications such as active PFC 
(power factor correction), photovoltaic power 
systems and fuel cells [18]. To provide high output 
voltage, dc- dc converter need to be operated at 
extreme duty cycle which subjects the switching 
devices to short pulse, high amplitude current which 
leads to reverse recovery and EMI (Electro Magnetic 
Interference) problems and the extreme duty cycle 
leads to poor dynamic response for line and load 
variations. Converters with coupled inductor can 
provide a high output voltage, less switching voltage 
loss without extreme duty cycle. But the leakage 

energy loss in the coupled inductor reduces the 
efficiency of the converter. To overcome these 
difficulties and to improve the performance of the 
boost converter interleaving technique can be used 
[19]. The benefits of interleaving include, reduced 
RMS current in the input capacitors, ripple current 
cancellation in the output capacitor, improved 
transient response and reduced EMI. In this paper, 
three stage interleaved soft switched boost converter 
is used to track the maximum power from PV 
system. 

Figure 3(a) shows the three stage interleaved soft 
switched boost converter  with soft switching that 
consists of  auxiliary switches (S1, S2 and S3), 
resonant diodes (D1, D2 and D3), resonant inductors 
(Lr1, Lr2 and Lr3) and resonant capacitors (Cr1, Cr2 and 
Cr3). Three stages interleaving technique needs each 
boost converter to be connected in parallel and it is 
operated at the same switching frequency, and that 
the switch of each boost converter be phase-shifted 



by 360°/3. Due to these features, the current ripple in 
source, voltage ripple at output and size of the 
passive components can be reduced. Due to the 
interleaving structure, the switching losses are 
reduced drastically compared to the conventional 
converter [20]. Further, zero voltage and zero current 
switching are employed for auxiliary switching 
devices to further reduce the switching losses. 
Consequently, this three-stage interleaved soft 
switched boost converter has the advantages of both 
the interleaving topology and soft switching cells.  

 
Figure 3(b) shows the switching logic with the 

theoretical current and voltage waveforms. Two 
switches of each stage, such as (S1, S2 and S3) are 
switched on and off, concurrently. Each phase has a 
phase shift of 120 degrees. Thus, the inductor current 
of each stage linearly rises or falls with a phase 
difference of 120 degrees with respect to the 
switching logic. As seen in Figure 3(b), the input 
current ripple is reduced and the input current ripple 
frequency becomes 3 times higher than the switching 
frequency. The modes of operation of the interleaved 
soft switched boost converter are divided into six 
modes .Figure 3(c) shows the modes of operation of 
the converter during one switching period. 

 
During mode-0, switches (S1, S3) are in the off 

state and switch S2 on state. The main inductor 
current (ILl, IL3) flows to the load through the main 
diode (D11, D33) and reduces linearly. The main 
inductor current IL2 flows to the load through the 
main diode D22 and raises linearly. In mode-1, 
switches (S1) is turned on with Zero Current 
Switching, due to the resonant inductor Lr1. The 
resonant inductor current (ILr1) starts to rise linearly. 
This mode is finished when ILr1 has become equal to 
IL1. Switch S3 already conducting and switch S2 is in 
off state during this mode. Mode 2 is known as a 
resonant mode. The diode (D11) at output end is 
turned off. Lr1 and the resonant capacitor (Cr1) start to 
resonate. The resonant capacitor voltage (Vcr1) 
reduces resonantly from the output voltage V0 to 
zero. 

 
During mode-3, the resonant diode (D1) is turned 

on. ILr1 flows through the two freewheeling paths, S1 
to Lr1 to D1 and S1 to D1 to Lr1. The IL1 starts to rise 
linearly and the path of the IL1 to L1 to S1 to Lr1 to S1. 
The Vcr1 retains zero voltage.Mode-4 begins when S1 

is switched off with Zero Voltage Switching, due to 
capacitor voltage Vcr1. Lr1 and Cr1 start to resonate. 
The ILr1 reduces resonantly and Vcr1 starts to rise 
resonantly from zero to V0. In mode-5,  IL1 and ILr1 
are summed together and the resultant current flows 
to the output through D11. ILr1 reduces to zero during 
this mode; it is completed as ILr1 has become equal to 
zero. 

 
4. Supervised online coactive neuro fuzzy 
inference system based MPPT algorithm 

 
Supervised learning techniques are more powerful 

in machine learning than unsupervised techniques 
because the availability of labeled training data that 
provides the clear standards for optimization model. 
Supervised learning of CANFIS structure can be 
formed using off line mode and online mode. Both 
operations have two types of learning i.e., structure 
learning and parameter learning. Structure learning is 
primarily to extract the fuzzy logic rules of the input 
data with tuning of fuzzy partitions for the input and 
output spaces. And so, the parameter learning adjusts 
the parameter of each pattern. These two forms are 
completed sequentially in off line operation. In the 
first stage, input data is partitioned and in a second 
phase, premises and consequent parameter of the 
network is updated using the gradient descent 
method and recursive least square method 
respectively [21].  

 
The primary drawback of this sequential learning 

scheme of off-line operation is that, it requires large 
quantities of representative data collection in advance 
and also the independent realization of the structure 
system and parameter learning usually requires a 
great deal of time. To address these problems and for 
faster learning, online operation has been brought in 
to perform the structure learning and parameter 
learning phases concurrently. To enhance the 
performance still further, supervised online learning 
of CANFIS controller is proposed in this paper. The 
proposed supervised online Coactive Neuro Fuzzy 
Inference System combines the merits of neural 
network and fuzzy inference system. Moreover, it 
performs the structure and parameter learning phases 
simultaneously. The structure of supervised online 
learning of CANFIS controller is shown in Figure 
4(a).  



 
Fig.4(a). Structure of supervised online CANFIS based MPPT controller 

 
Fig.4. (b). Architecture of CANFIS Network 

The output of the desired model provides the 
supervised output for the online CANFIS controller. 
The error between supervised output and online 
CANFIS controller output is given by 

  
௉ܧ = ெܲ − ஺ܲ    (9) 
 

Next, the process of applying online learning 
algorithm to identify CANFIS parameters has been 
discussed. The CANFIS system, as the name 
suggests, is a Coactive Neuro-fuzzy inference 
machine. It also eliminates the shortcomings of the 
neural network and fuzzy logic system and it works 
as a universal approximator [21]. The CANFIS 



controller consists of five layers as shown in Figure 
4(b).  

 
Initially, there is one input and output node in the 

CANFIS but rules in the CANFIS have been 
generated without any input and output membership 
function. The structure learning is used to find proper 
fuzzy logic rules from the input data and to minimize 
the number of rules and fuzzy sets generated on the 
universe of discourse of each input variable. The first 
step in the structure learning is to determine whether 
or not to perform the structure learning. If Gmin ≤ G 
or Tmin ≤ T, where Gmin and Tmin are preset positive 
constants (irradiance and temperature), then the 
structure learning is necessary. Next, it will further 
decide whether or not to add a new membership 
function node, the associated fuzzy logic rule in the 
rule layer of the CANFIS. The parameter learning is 
based on supervised learning algorithms to adjust the 
parameter of the membership function, and 
parameter of the consequent part using the back 
propagation algorithm and recursive least square 
method respectively. Details of the parameter 
learning (back propagation and recursive least square 
algorithm) are explained in the layer 1 and layer 4 of 
the CANFIS [21]. 

 
Layer 1 is known as the input layer. In this layer 

input fuzzification takes place. Each input is assigned 
a membership value to each fuzzy subset that 
comprises that input’s universe of discourse. 
Mathematically, this function can be expressed by 
equation (10),  

 
O୧୨

(ଵ) = μ୨ ቀI୧
(ଵ)ቁ    (10) 

 
Where Oij

1 is the layer 1 node’s output, which 
matches to the jth linguistic term of the ith input 
variable Ii

1. A generalized Gaussian function 
memberships functions used for input variables and 
expressed in equation (11) as, 

 
μ୨(x୧) = ଵ

ଵାቤ
౮౟షౙ౟ౠ
౗౟ౠ

ቤ
ౘ౟ౠ

    (11) 

 
Where i=1…n and j=1…Ni (y=Ni). Numbers of 

input variables are equal to n and y is equal to 
number of fuzzy subsets for each input variable. 
While the triplet of parameters aij, bij and cij is 
referred to as premise parameters or non-linear 
parameters and they adapt the conditions and the 

position of the membership function role. Those 
parameters are corrected during the training mode of 
procedure by the error back-propagation algorithm. 
Those premise parameters or nonlinear parameters 
are updated at each iteration i.e. after each input-
output pair is received during training and to 
minimize the instantaneous error function as given in 
equation (12),  

 
(݊)ܧ = ଵ

ଶ
( ெܲ

௠(݊) − ஺ܲ
௠(݊))ଶ  (12) 

 
Where PM

m(n) is the desired output or supervised 
output and PA

m(n) is the output of the online CANFIS 
controller at each step time (n). For each input-output 
training data pair, the CANFIS operates in the 
forward pass in order to calculate the current output 
PA

m(n). Subsequently, going from the output layer, 
and moving backwards, the error back-propagation 
executes to calculate the derivatives ப୉(୬)

ப୵
 for each 

node at every Layer of the network. At the end of 
every iteration, the non-linear parameter aij, bij and cij 
of the input membership function is updated by the 
equation (13) as,  

 
ܽ௜௝

(ଵ)(݊ + 1) = ௜௝ܽ) ߙ
(ଵ)(݊)) + ߟ ൭−

(݊)ܧ߲
߲ܽ௜௝

(ଵ) ൱ 

     ܾ௜௝(ଵ)(݊ + 1) = ௜௝ܾ) ߙ
(ଵ)(݊)) + ߟ ቆ− డா(௡)

డ௕೔ೕ
(భ)ቇ 

      ܿ௜௝(ଵ)(݊ + 1) = ௜௝ܿ) ߙ
(ଵ)(݊)) + ߟ ቆ− డா(௡)

డ௖೔ೕ
(భ)ቇ   (13) 

 
Where η is the learning rate of the network 

parameters and α is the steepest descent momentum 
constant. 

 
Layer 2 is known as fuzzy AND operation layer. 

Each node in this layer performs a fuzzy-AND 
operation. Here, T-norm operator of the algebraic 
product was chosen. This will result to each node’s 
output. It is the product of all of its inputs and 
expressed in equation (14). Every input node is 
connected to that rule node. 

 

௞ܱ
(ଶ) = ௞ݓ = ∏ ∏ ௜ܱ௝

(ଵ)௬
௝ୀଵ

௞
௜ୀଵ   (14) 

 
Where k =1…nm. The output of each node in this 

layer represents the firing strength or the activation 
value of the corresponding fuzzy rule. 

 
Layer 3 is known as normalization layer. The 

output of the kth node is the firing strength of each 



rule divided by the total sum of the activation values 
of all the fuzzy rules. This will result in the 
standardization of the activation value for each fuzzy 
rule and it is presented in equation (15) as, 

 

 O୩
(ଷ) = w୩തതതത = ୓ౡ

(మ)

∑ ୓ౢ
(మ)౯మ

ౢసభ

   (15) 

 
Layer 4 is known as a linear parameter layer. 

Each node k in this layer is accompanied by a set of 
adjustable parameters d1k

m, d2k
m… dyk

m, d0
m

 and 
implements the linear function as expressed in 
equation (16), 

 
O୩୫

(ସ) = w୩തതതതC୩୫ = w୩തതതത൫dଵ୩୫ Iଵ
(ଵ) + dଶ୩୫ Iଶ

(ଵ) + ⋯+ d୷୩୫ I୷
(ଵ) + d଴୫൯  (16) 

 
The weight ݓ௞തതതത is the normalized activation value 

of the kth rule, calculated with the aid of equation 
(15). Adjustable parameters for this layer are called 
consequent parameters or linear parameters of the 
CANFIS system and they are set by a recursive least 
square algorithm. For online supervised CANFIS 
controller, inputs and output parameters are 
considered to be G, T and PA

m. The output is 
expressed in equation (17) as, 

  
݂௠൫ܩ(݈),ܶ(݈)൯ ݒ(݈) = ஺ܲ

௠(݈)  (17) 
 
Where G(l) and T(l) are controller input vectors, f 

is the known function of the inputs and d(l) is the 
unknown parameter to be estimated. In order to 
identify the unknown parameter d(l), we need input-
output training data on the target system and it is 
obtained from the desired model  algorithm and 
expressed in a set of ‘t’ linear equation given in (18) 
as, 

 
௧݂
௠൫ܩ(݈),ܶ(݈)൯ ݒ(݈) =  ெܲ

௠(݈)  (18) 
 
By the application of recursive least square 

algorithm, the consequence or linear parameter of the 
online CANFIS controller is updated in the layer 4. It 
is given in the equation (19) as, 

 

௝݀௞೙శభ
௠ = ௝݀௞೙

௠ + ଵ
ఒ
൬ ௡ܲ −

௉೙௙೘௙೘
೅௉೙

ఒା௙೘೅௉೙௙೘
൰ ∗

 ݂ቀܷ − ݂௠೅
௝݀௞೙
௠ ቁ ܽ݊݀   ݀଴೙శభ

௠ = ݀଴೙
௠   (19) 

 

Where, ௡ܲ =  ቀ ௧݂
௠೅
௧݂௠ቁ ߣ

ିଵ
 and λ is the 

forgetting factor of the online CANFIS controller. 
The typical value of λ in practice is between 0.9 and 
1. The smaller λ is, the faster the effect of old data 
decay. A small λ sometimes causes numerical 
instability and thus should be avoided. In this work, λ 
is taken as 0.9. 

 
Layer 5 is known as output layer. This layer 

consists of one and only node that produces the 
network’s output as the algebraic sum of the node’s 
inputs [21]. It is presented in equation (20) as, 

 
Uୟ
୫ = O୫

(ହ) = ∑ O୩୫
(ସ)୷మ

୩ୀଵ = ∑ w୩തതതത
୷మ
୩ୀଵ C୩୫ =

∑ ୵ౡେౡ
ౣ౯మ

ౡసభ

∑ ୵ౡ
౯మ
ౡసభ

  (20) 
 
The output of the supervised online CANFIS 

controller and actual power from PV panel is 
compared and it is provides the error power value for 
PI controller and PI controller is providing control 
current signal to the ZVS and ZCS switching logic 
generation units. Simulation results and experimental 
verification of the proposed system is discussed in 
the subsequent sections of the paper. 

 
5. Simulation results 
  

The proposed supervised online coactive neuro 
fuzzy inference system based MPPT control 
algorithm is simulated in MATLAB/Simulink. The 
PV module is connected to a three stage IBC. The 
specification of the PV module is shown in Table 1. 
The I-V and P-V characteristics are shown in 
Figures.5 (a) &5(b).  

 
 

Table.1. Parameters of the PV Panel 
 

S.No Description Values 
1. Maximum Power  110 Watts 
2. Maximum Voltage 35.5 Volts 
3. Maximum Current 3.2 Amps 
4. Short circuit current 4.35 Amps 
5. Open circuit Voltage 40.5 Volts 
6. Normal operating 

temperature 
25 °C 

 
 
 
 

 



 
Fig.5. (a) Power versus Voltage characteristics of PV Panel 

 
Fig.5. (b) Current versus Voltage characteristics of PV Panel 

Simulation studies were carried out under steady 
state and dynamic conditions with the proposed 
supervised online CANFIS algorithm and compared 
with conventional P&O and FLC algorithms 
respectively.  

 
The input of three-stage IBC is 35 V, the output 

obtained is about 110 V and the duty cycle of PWM 
is 33%. The input inductor value is 500 μH, the 
resonant inductor is 40 μH, the resonant capacitor is 
20 nF, the input capacitor is 200 μF and the output 
capacitor was 440 μF and the load is 30 Ω.  

 
The parameters that are taken to analyze the 

performance of each MPPT algorithm are transient 
time, maximum power ratio, oscillation, overshoot 
and stability. The maximum power ratio is estimated 

from ratio of the output acquired from simulation 
work to predictable output obtained in the datasheet 
of the chosen PV panel which may differ for various 
irradiances. The noise from the current and voltage 
sensors are also accounted in the simulation work. 
The simulink model of the proposed supervised 
online CANFIS based MPPT algorithm is shown in 
Figures 5 (c) – 5(d). 

 
5.1. Simulation results with constant irradiance 

 
Steady-state test is performed for various 

irradiances such as 400, 800 and 1000 W/m2. Figure 
6 shows outcome of each MPPT algorithm towards 
the MPP and MPPT voltage and the corresponding 
parameters are tabulated in Table 2.  

 



 
Fig.5. (c) Simulink Model of the proposed MPPT algorithm For PV array 

 
Fig.5. (d) Simulink Model of Three stages soft switched IBC interfaced with PV 



 
Fig.6. (a) Maximum power and voltage for irradiance 400 W/m2 

 
Fig.6. (b) Maximum power and voltage for irradiance 800 W/m2 



 
Fig.6. (c) Maximum power and voltage for irradiance 1000 W/m2 

Table.2. Comparison of MPPT algorithm and converter voltage 
Comparison results of Maximum Power point 

Irradiance 400 W/m2 800 W/m2 1000 W/m2 
Algorithm CPO Fuzzy CANFIS CPO Fuzzy CANFIS CPO Fuzzy CANFIS 

MPP ratio % 89.1 92.1 95.3 90.6 93.1 94.5 89.6 93.5 96.4 
Comparison results of converter voltage 

Irradiance 400 W/m2 800 W/m2 1000 W/m2 
Algorithm CPO Fuzzy CANFIS CPO Fuzzy CANFIS CPO Fuzzy CANFIS 

Overshoot % 5 2 1 4 3 0.8 4 5.5 0.9 
Transient time (msec) 200 200 10 250 200 20 300 200 10 

          
Figure 6 shows the results of all three MPPT 

algorithms to attain a maximum power point at low 
irradiance, medium irradiance and high irradiance. At 
400 W/m^2 irradiance, proposed algorithm works 
well at this irradiance as compared to the other two 
MPPT algorithms. P&O shows the worst dynamic 
MPP ratio, slow time response and not stable at this 
condition. High over damped behavior is observed 
for P&O which may cause power losses. Fuzzy 
Logic algorithms also produce a low dynamic MPP 
ratio, slow time response, not that stable and low 
over damped behavior as compared with proposed 
algorithm. At 800 W/m^2 irradiance, the figure 
shows a clear result that confirms supervised online 
CANFIS produces better performance in terms of the 
dynamic MPP ratio, stability and time response. 

P&O algorithm shows the worst performance, 
especially at this irradiance with low dynamic MPP 
ratio, high over damped behavior and not that stable. 
The fuzzy logic algorithm is much better as 
compared with P&O. At 1000 W/m^2 irradiance, all 
three MPPT algorithms perform well and produce a 
high dynamic MPP ratio, good stability and fast time 
response. In more specific, the supervised online 
CANFIS algorithm still shows the best performance, 
especially in term of a dynamic MPP ratio. 
Performance in low irradiance is critical wherever at 
this level the power is very small. Both conventional 
P&O MPPT and fuzzy logic based MPPT algorithms 
show low capability to extract maximum power 
when compared to the proposed supervised online 
CANFIS MPPT algorithm. 



 
Fig.7. (a) Maximum power point with step change in irradiance level 

 
Fig.7. (b) Converter voltage variation with step change in irradiance level 

The performance characteristics of three 
algorithms are shown in Table 2. For P&O algorithm, 
the time response is about 200-300 ms before 
reaching to stable state, overshoot is about 4-5.5 %, 
power ratio is about 89.1-90.6 % and high oscillation 
exists. For FLC algorithm, the time response is about 
200 ms before reaching stable state, overshoot is 
about 2-5.5 %, power ratio is about 92.1-93.5 % and 
high oscillation is observed. The best result is from 
supervised online CANFIS algorithm that achieves 
time response at only 10-20 ms before reaching 
stable state, overshoot is about 0.8-1 %, power ratio 

is about 94.5-96.4 and only low oscillation exists. 
Therefore, from the simulation results, performance 
of proposed algorithm is much better as compared to 
both conventional P&O and Fuzzy logic MPPT 
algorithms in terms of time response, overshoot, 
maximum power ratio, oscillation and stability. 

 
5.2. Simulation results with step varying 
irradiance 

 
Figure 7 shows the maximum power point and 

converter voltage variation with step change in 



irradiance level of PV panel.  Figure 7 (a) shows the 
maximum point tracking response for step change in 
irradiance level. From these results, all MPPT 
algorithms are able to extract Maximum power point 
of the PV module. When the irradiation is about 0–
400 W/m^2, the conventional P&O not able to 
extract the maximum power due to power losses and 
also it is noticed that the slowest time response, high 
oscillation and not that stable. The Fuzzy Logic 
MPPT algorithm shows better results when compared 
with conventional P&O in terms of good time 
response, low oscillation and stable. However, the 
supervised online CANFIS algorithms truly show the 
most excellent performance when compared with 
both conventional P&O and fuzzy logic MPPT 
algorithms. The efficiency is very high, time 
response is quick, really small oscillation exists and 
operation is more stable. 

 
Figure 7 (b) shows variation of converter voltage 

with step change in irradiance level. Three MPPT 
algorithms start to work and boost up the output 
voltage from 85 V to 110 V according with 
irradiance level. The major differences between these 
three algorithms are their effects on time response 
and overshoot. For P&O algorithm, the time response 
is around about 300 ms before reaching to stable 
state, overshoot is around about 10V and high 
oscillation exists. For FLC algorithm, the time 
response is around 200 ms before reaching stable 
state, overshoot is around 5V and high oscillation is 
observed. For the proposed supervised online 
CANFIS MPPT algorithm the time response is about 
15ms before reaching stable state, overshoot is 
around about 1V and only low oscillation exists. 
Therefore, the proposed CANFIS algorithm is much 
better compared to P&O and fuzzy logic MPPT 
algorithms in terms of overshoot, time response, 
oscillation, maximum power ratio and stability. 

 
6. Experimental setup and results 

 
In order to validate the proposed supervised online 
CANFIS MPPT algorithm experimental laboratory 
setup is developed and it is shown in Figure 8 (a). 
The three stage interleaved soft switched boost 
converter is also fabricated. TMS320LF2407A DSP 
Processor board is used to implement the MPPT 
algorithm [22].  

 
Fig.8. (a) Real time experimental setup of proposed 

control system 

 
Fig.8. (b) Time response of output voltage and current for 

conventional P&O MPPT algorithm  

 
Fig.8. (c) Time response of output voltage and current for 

Fuzzy logic MPPT algorithm  



 
Fig.8. (d) time response of output voltage and current for 

supervised online CANFIS MPPT algorithm  

Time responses of the output current and voltage 
with all three MPPT algorithms are shown in Figures 
8 (b)-(d). Voltage of three stage soft switched IBC is  
boosted from 90V to 105V. The proposed MPPT 
algorithm shows  the fastest transient response  and 
the response time is around 400 ms,  whereas for  
Fuzzy MPPT it is about  600 ms, and the P&O 
algorithm  is about  800 ms. Maximum power point 
is 98W for proposed algorithm,  fuzzy logic is around 
92.5W and for conventional P&O is about 85.5W. 
Thus the experimental results are verified with the 
simulation results. From the simulation and 
experimental results, it is clear that the proposed 
supervised online CANFIS MPPT algorithm 
performs well in all aspects for tracking maximum 
power from PV which will be more suitable for all 
applications. 

 
7. Conclusion 

 
A novel supervised online CANFIS based 

maximum power point technique for photovoltaic 
system has been presented. The overall photovoltaic 
conversion system has been designed and simulated 
in MATLAB/Simulink. Effectiveness of the 
proposed MPPT is analyzed and compared with 
conventional P&O and Fuzzy Logic control. The 
performance of the photovoltaic system is simulated 
for various operating conditions with proposed 
technique to suit the real time environment. In order 
to formulate a realistic comparison, several 
performance measures are used such as maximum 
power ratio, overshoot and transient time. The results 
obtained from the simulations clearly show the 
drastic improvements on performance measures and 
extract maximum power from PV panel than other 

considered techniques i.e., maximum power ratio is 
around 96  %, transient time response is less than 15 
ms, overshoot is less than 1 % and more stable than 
conventional P&O and fuzzy logic MPPT algorithm. 
And also the proposed controller was implemented 
with TMS320LF2407A DSP Processor and tested for 
different irradiance level. From the results, it is 
ascertained that, the proposed MPPT algorithm 
performs very well in all aspect than the other 
considered MPPT algorithm. 
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