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Abstract: A new control strategy for Induction Motor (IM)
operating at variable speed and torque is proposed in this paper.
The entire purpose is to introduce a new energy optimization
approach using dynamic constraint of rotor variables under
Rotor Field Oriented Control (RFOC). Such control strategy is
based on a designed cost function given as a weighting sum of
stored energy, coil losses, and mechanic power. The proposed
algorithm is devoted to establish the optimal dynamic of rotor
flux versus the motor speed by taking into account two
constraints linked to transient regimes of rotor flux and speed.
From such algorithm, a time-varying rotor flux values can be
determined which optimizing IM energy. Aiming to check it
validity, the proposal was implemented in a RFOC of a 1.5 kW
laboratory IM. Regarding to recent works and to the presented
algorithm results, better performances can be obtained since
lowest energy consumption of the IM is reached in dynamic
regime.

Keywords: Induction motor, optimal control, energy
minimization, field oriented control, dynamic regime.

1. Introduction

Some of the largest opportunities to save energy and
reduce operating costs in buildings and industrial facilities
come from optimizing electric motor systems. In general,
the most part of electricity assumed flows through motors
mainly induction motors. The IM is the dominant
technology used today due to its high performance, its
high reliability, and its speed and torque capabilities.
Many control strategies of minimizing energy
consumption of IM were proposed in the literature; most
of them lead to increase the IM efficiency [11] and [12].

The conventional RFOC method operating at constant
rotor flux norm fixed at its standard level provides
maximal efficiency when the system operates at its
standard operating point. Far from this, the machine's
efficiency decreases; it can result from a torque magnitude
change. Thus other modes of flux operation are required in
order to reach system with optimal performances.

Certain works emphasised a developing and
implementing of the RFOC and minimum-energy

approach simultaneously [7], [10], [14], and [15]. Tr.
Munteanu et al. [8] used the matrix Riccati differential
equation to solve a quadratic performance criterion that
involves energy in both inertia and motor windings. They
gave an online numerical solution for the IM drive. Aiyuan
Wang et al. [9] proposed a performance criteria index
containing copper and iron losses. The IM model took into
account the iron loss resistance which was introduced in
the expression of the different currents. They proposed an
online numeric solution of the optimal rotor flux. C.
Canudas de Wit et al. [6] considered a convex energy cost
function including the stored magnetic energy and the coil
losses. They developed a nonlinear Euler-Lagrange
equation, from which an optimal flux norm trajectory can
be derived. The obtained equation was unsolvable for an
arbitrary torque. They proposed a suboptimal analytical
solution aligned with a constant torque operation.

Keeping on this framework, an original technique
leading to determine the optimal rotor flux in dynamic
regime is proposed. The method use a reduced model of
the IM in a turning (d,q) reference frame [6]. The proposed
optimum-energy method is based on the optimal control
theory focus on minimizing a cost function given as an
integral of a weighted sum of energy and power of the IM.
The reduced model is composed by the dynamics of motor
speed and rotor flux and it is introduced as dynamic
constraints in the Optimal Control Problem (OCP). The
minimum of the cost function is subjected to those two
dynamics constraint and This OCP defined as a minimum-
energy approach is depending on two state variables: rotor
flux and motor speed and two control variables: the rotor
flux and the torque currents. The task in this OCP can be
simplified to find the optimal rotor flux that provides the
lowest IM's energy consumption along the given motor
speed range.

To solve this problem, an important mathematical
background is needed and dealing with a high complexity
level of calculus. Some of the useful tools are the Euler-
Lagrange equations [2]
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By applying the Euler-Lagrange equation to the
proposed OCP a system of nonlinear differential equations
is established and by means of analytical resolution in the
case of the steady state operation and a time-varying
solution is given. But in the case of the transient regime, a
numerical resolution is imposed and the solution is
presented by a recursive formula. Both of the operation
modes, the solutions provide a minimum-energy rotor flux
trajectories. By implementing this solution as a reference
to the rotor flux closed-loop of the RFOC, a minimum-
energy consumption of the IM is registered.

In this paper, the second section is devoted to describe
the dynamic model of the IM from which the full-order
model then the reduced one and the energy model are
developed. The third section is dedicated to present the
OCP in the case of a minimum-energy approach. In the
same section, the resolution of the OCP is performed by
the help of the Euler-Lagrange equation. By choosing the
mechanical operation modes, minimum-energy rotor flux
trajectories are achieved.  In section four, a deadbeat rotor
flux controller is presented. In the fifth section, the
Optimal Rotor Flux Oriented Control (ORFOC) is
explained. The sixth section includes simulation results of
the ORFOC compared to those obtained in the former
studies which are experimentally proved.

2. Model of IM

2.1 Full-order dynamic model of IM

The full-order dynamic model of an IM viewed from
the synchronous rotating reference frame is given by (1) to
(3) [1, page 501]:
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,when rR and sR are the rotor and stator resistances;

rL and sL : The rotor and the stator inductance,
respectively; M is the magnetizing inductance. mJ : is the
total moment of inertia of the rotor and fly-wheel masses
reduced to the motor shaft; l : is the load torque.

l is modelled as a function of rotor speed, as found in
many industrial applications. For many mechanical
systems, l can be modelled proportional to the motor
speed, as follows:

 ll K )4(

with lK : is the load torque constant.

2.2. Reduced Model
The stator current is taking as an input control of the

system. A high gain control current loop is chosen in order
to simplify the optimization algorithm efficiency [1, page
494]. Such choice permits to use a reduced order current
fed IM model; the current loop is given as [6]:
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where 10   and U is the new machine control
variable.

By considering this control, the reduced model can be
obtained using the “singular perturbation” theorem [15].
This implies from (5),   ., UI qd

s  And from (1), (2) and
(3), a reduced model of the IM is built as follows:
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2.3. Energy model of the IM

The instantaneous active power of an IM in rotating
dq-frames is given by:
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The instantaneous active power is then given by:
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This yield the stored magnetic energy of the induction
machine, given as follows:
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is the stored magnetic energy of the induction machine,
and the total copper losses:
From equation (10), we can also assign:
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By using equations (2) and (9), those losses can be

expressed with respect to U and r as follows:
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3. The optimal control problem

An optimal control problem is based on minimizing a
cost function. In this case the cost function can be given as
the integral of an index ),,,(  rsqsd IIf , given as follows:

 
T

rsqsdr dtIIfJ
0

),,,( )18(

The index corresponds to the weighted sum:
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The weighting factors 3,2,1i are used to scale power-
energy combined convex criteria terms defined above.
Minimizing the cost function consists on minimizing the
magnetic energy LW which corresponds, close to the rated
operating point, to maximize the power factor. And it
consists, also, on minimizing losses that increase the
machine efficiency. By using (10), (12), (18) and (20), the
cost function is given as
follows:
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3.1 Minimum-Energy approach

By using the reduced model given by the system (21)
and the cost function given by the equation (20), an
optimal control problem can be situated and presented as
follows:
Find the optimal control variables 

1u and 
2u that

minimize the following cost function:
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Subjected to the dynamic constraints given in the system
(21).

where the weighting factors 1r , 2r , 1q and 2q must be
positives.
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By replacing the expression of 1u and 2u from the
system (21) in the cost function in (22), one obtains:
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3.1.1 Euler-Lagrange equation



The integral given in (22) can be expressed as follows:

 
T

rrr dtLJ
0

),,,( )26(

and can be solved with Euler-Lagrange equation [3],
[4],[5] with respect to the following condition: This
integral has an absolute minimum  and  r , if their
trajectory satisfies the following conditions:

0,,,(,,,( 
















































 





rr

r

rr
r

L
t

L )27(

and

0,,,(,,,( 















































 





rrrr L
t

L )28(

3.2. Development of the strategy

3.2.1. Development of the Euler-Lagrange equation

Aiming to solve the equations (27) and (28) and by
using the expression of the cost function in (25)
The condition (27) becomes:
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Using (28) and regarding to (25), yields:
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From (29) and (30), the energy optimization problem is
described by a second order differential equation:
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3.2.2. Linear Time-varying motor speed

In order to obtain an accelerate mode (transient
regime), the motor speed can be chosen as follows:
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with 00 c .

As a consequence the second equation in the system
(32) has no physical significance and can be skipped.
Taking into account the equation (32), the first equation in
system (31) becomes:
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In the case of an accelerate-motoring mode of the IM,

both )(tr and )(tr

 are positives, the equation (35) can

be expressed as follows:
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It’s difficult to solve this first order differential
equation, but it can be implemented in numerical form as
an online solution of the minimum-energy rotor flux
reference:
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3.2.3 Constant motor speed

Because of the proportionality of the load torque to the
motor speed, a constant load torque corresponds to a
constant motor speed. We can allow to the motor speed
reference, the following expression:
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The same development of the preceding paragraph
from the first equation of the system (31) yields the
following expression:
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Substitute )(ts for )(tr , as follows:   2
rs  ; a first-

order differential equation can be obtained from (41):
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From (43), )(ts can be determined as follows:
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This yields the following solution:
















   )(2

2

0)(2
0

2*
1

0202 1)()( ttatta
r e

a
etts


)44(

The optimal rotor flux is given as follows:
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Figures (1) and (2) illustrate the time-varying curve of
the minimum-energy rotor flux at the following two
conditions respectively:
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4. Deadbeat control of the rotor flux level

These kinds of problems need a wide range of the rotor
flux magnitude variation. A deadbeat response have been
chosen to regulate the rotor flux level [12] by means of a
digital controller producing a flux level response with
zero-state error and having a finite minimum settling time
in its step response

In practice, the magnetic saturation has an important
influence on rotor flux level control. The mutual
inductance M varies widely in the motor operating region
[12]. For the computation of optimal rotor flux, the mutual
inductance values of the machine under this consideration
should be used. If incorrect mutual inductance value is
used in controller, it may cause instantaneous errors in
rotor flux level. Thus it is essential to use the accurate
mutual value in order to have a good dynamics in the
transient change of the torque. Then in order to examine
and describe the detuned effect of the magnetizing
inductance, various models can be used. One of the most
adequate representations of magnetizing rotor current mri

Figs. 1 and 2: Minimum-energy rotor flux versus time
Figure (1): st 10  and sT 11.0
Figure (2): st 10  and sT 4
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in terms of rotor flux r taking into account magnetic
saturation consists on assigning a steady state law to the
variation of the magnetizing rotor current. The following
analytic polynomial function is chosen, as follows:
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The variation of the mutual in steady state operation
can be given by:
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with: 21 , cc and 3c are the coefficients of the
magnetizing curve.

In the case of the asynchronous machine, the
coefficients: 21 , cc and 3c are computable with a good
precision by using the real curve  rfM  . The
characteristic is accessible, by means of a no-load test to
be realized on the machine. Figure 3 shows the results of
the variation of M according to the rotor flux.
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By using the least squares method, one can deduce the
values of many constants:

6926.21 c , 6528.22 c et 4749.23 c .
In a rotation reference frame, the rotor flux can be

expressed using the proposed control strategy as follows:
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The reference value of current *
sdI can be written as

follows [12]:
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where sT is the settling time, rT is the rotor time constant,

 sr iT

 and  siTM are respectively the estimated rotor
flux and the mutual inductance at sampling time siT .

5. Optimal Control in Field Oriented Control (ORFOC)

The ORFOC of the IM is given in figure 4.

Figure (4): ORFOC scheme of the IM.

The RFOC drive of the IM, given in Figure 4, is
initialized through applying a motor speed reference.
Every step, the test-bloc decides on which type of
operation mode the IM will undergo: steady state or
transient mode (the step size was chosen enough in order
to disable the undesired evaluation errors). One of the
blocs A or B predicts the minimum-energy rotor flux
reference. This reference will be implemented in the rotor
flux closed-loop.

Finally, an optimal rotor flux current by means of the
deadbeat controller is delivered to the remaining parts of
RFOC drive. On the other hand, a transient torque current
reference will be delivered to the rest of the RFOC drive.

Figure (3): Mutual inductance versus rotor flux.
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The simulations results are carried out on a three-phase
IM, 380V, 1.5KW, 50Hz and 4 poles, squirrel cage
induction motor. The motor parameters are rR = 4.2
ohm, sR =6.06 Ohm, rL = sL = 0.462 and the mechanical
parameters are: 0049.0mJ and 067.0lK . For the
conventional RFOC algorithm, the mutual inductance M is
chosen constant and equal to 0.44H. But for the optimized
RFOC using the minimum-energy rotor flux, M will be
chosen as the expression in equation (48).

6. Simulation results

6.1. Comparison results with the conventional RFOC

By applying a rotor speed reference as shown in Figure
5(a) a rotor flux reference is deduced from equations (37)
or (45) when the IM is at either transient or steady state
operation. Both of the rotor flux and the torque controllers
deliver to the rest of the RFOC respectively the reference
of optimal direct stator current and the reference of the
desired indirect stator current reference.

It is obvious to remark from Figure 5(b) that the flux
current given from the conventional RFOC remains
constant during the rotor speed increasing accompanied by
an increasing torque current. Figure 5(c) shows that the
flux current delivered by the ORFOC registers a
significant decrease compared to the one delivered by the
conventional RFOC. This means that the presented method
saves energy.
In order to compare the different levels of stator currents,
power factor, efficiency and energy delivered from
different strategies of RFOC, and because they register
high harmonic profiles, we have simplified these signals as
shown in Figure (5-(c)) compared to the Figure (5-(d)): by
picking up one point every sT900 second with sT is the
settling period of the space vector modulation used in the
RFOC. This period is chosen for this case equal to

5000
1 (s). The accompanied Figure of 5-(c) is the zoomed

version of the direct stator current in the interval [2.9s,
3.1s] of time.

On the other hand, Figures 5(e) and 5(f) show the
magnetic energy and the power factor, respectively. These
results given by the proposed ORFOC compared to those
delivered from the conventional RFOC prove that the
minimization of the cost function performed by the
proposed method causes a stored magnetic energy saving
and consequently a power factor maximization. By
comparing the energy consumption of the IM under
ORFOC to a conventional one in Figure 5(g), Shows that

minimum energy is occurred in all the motor speed range
as shown in the accompanied Figures for law, medium and
high motor speed level.
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6.2. Comparison results with other controller techniques

6.2.1 The sub-optimal energy method strategy [6], [14]

This minimum-energy method defined as a sub-
optimal energy method (SOEM) was introduced by C.
Canudas de Wit et al. [6], [14], and based on the theory of
the optimal control. This method is subjected to the energy
consumption optimization of the IM. By using a simplified
IM energy model and defining a correspondent cost
function, the presented optimal control problem showed a
strategy of minimizing this cost function with dynamic
constraint of the rotor flux.
From any load torque trajectory, an approximated optimal
solution or sub-optimal solution was fairly determined
referring to the low-frequency load torque trajectory and
giving as follows [6]:
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where nr
* and ny are the nominal flux and nominal

torque respectively  which is a function of the
weighting factors.
For a known time-variant trajectory )(tyd , the authors
supposed that the following approximate solution:

dr yt  )(ˆ * )51(

uniformly approaches the optimal solution if the first and
second time-derivative of the desired torque are small
(which mean for the law-frequency of the load torque
trajectory).

6.2.1.1 Comparison results

From a transient rotor speed reference showed in Figure
6(a), a comparative study in both of transient and steady
state regimes was performed. These results are subjected
to four different RFOC, giving respectively: the RFOC
operating with SOEM solution, RFOC operating at rated
rotor flux, RFOC operating with the proposed minimum-
energy rotor flux *

r without magnetic effect and the

RFOC operating also with *
r but by taking into account

the saturation effect. From Figures 6(b) and 6(c), it is
obvious to observe that the RFOC taking into account the
magnetic effect and operating with *

r leads to the best
IM energy consumption decreasing. Figures 6(d) and 6(c)
confirm this result with high quality of the IM efficiency
increasing obtained by the same type of RFOC for either
light or medium rotor speed.
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Figure (5):  (a): Rotor speed reference; (b): Rotor
flux and torque currents; (c) and (d): Real and
simplified curves respectively of the rotor flux and
torque currents; (e): Stored magnetic energy in the
IM; (f): Power factor of the IM; (g): Total IM energy
consumption.
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6.2.1 Minimum-Loss Control: (MLC) [16]

This proposed method was presented by Jae Ho Chang et
al., section IV in [16]. In this study, a simple method is
presented to determine the appropriate flux level
considering copper loss in the steady state to minimize the
energy consumption of the IM.
A field oriented control is considered with a steady state
IM operation.
From minimizing the IM loss expression with respect to
the rotor flux, the authors considered the following
expression of the optimal rotor flux given by the equation
(52):
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with dy : as the desired torque.
The authors in this study required that this minimum-loss
control is applied to get high efficiency during the steady
state only.

6.2.2.1 Comparison results

To demonstrate the merits of the ORFOC using our
proposed minimum-energy method, comparison results
with MLC are performed. By implementing as a reference
in the RFOC’s flux controller a minimum-energy rotor
flux trajectory giving from the equation (45) as well as the
proposed optimal rotor flux [16], giving by the equation
(52), and by keeping the same rotor speed reference
trajectory giving by the Figure 6(a), simulation results of
the consumed energy of the IM under these different
RFOC are showed in Figure 7. It’s obvious to observe the
energy consumption decrease from our proposed ORFOC
compared to the RFOC’s results using the MLC strategy.
This decrease is fairly registered also in the steady state
operation.
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Figure (6): (a): Rotor speed reference; (b): Estimated and
reference of rotor speed; (c): Total IM energy consumption,
at light rotor speed range, (d): Total IM energy consumption,
at medium rotor speed range, (e): IM Efficiency, at light
rotor speed; (f): IM Efficiency, at medium rotor speed.
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Figure (7): Energy consumption evolution from both of
the proposed ORFOC and the RFOC using MLC
strategy.
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7. Conclusion

In this paper, a minimum-energy approach is
presented. Based on the optimal control theory, this
approach provides a cost function given as weighted sum
of an IM energy-power model. In order to obtain a
minimum-energy rotor flux trajectory, the presented task is
to minimize this cost function constrained to a two
dynamic equations of the rotor flux and the motor speed.
By applying the Euler-Lagrange resolution, analytic
solution is given in the case of steady state regime of the
load and a recursive formula of the optimal rotor flux is
given in transient regime and especially for an accelerated
IM. Those minimum-energy rotor flux norms are
implemented in the RFOC for a given operating mode.
This control law develops the magnetic saturation effect
on the motor parameters and a deadbeat control instead of
the Proportional Integral in the rotor flux closed-loop is
provided.

A comparative study is given and proves the validity of
the proposed minimum-energy approach. This optimal
rotor flux oriented control is compared to the one using the
SOEM solution which is experimentally confirmed. The
Comparison study is made also with the results given by a
conventional RFOC and with an ORFOC but without
taking into account the saturation effect on the motor
parameters.
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