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Abstract: The conventional electric power grid is 

presently evolving into smart grid by providing new 

services based mainly on information and communication 

technology.  Due to the new facilities and services, the 

strength of a smart grid communication network against 

data attack is one of the ultimate problems that affect the 

entire system. In this work, some of the most vulnerable 

data attacks such as random fault attack, denial of service 

(DoS) attack and false data injection attacks against the 

state estimation in electric power system are discussed. 

This article is dedicated to study these cyber security 

issues in smart grid enabled power system using 

Unscented Kalman filter (UKF) along with χ
2
-detector and 

Euclidean detector.  To obtain a reliable estimate of the 

system’s state, the noise covariance of the Kalman filter 

has to be tuned before the operation. Therefore, tuning of 

the UKF using particle swarm optimization (PSO) 

technique for minimizing estimation error is presented in 

this work. The simulation results show the benefits of the 

PSO tuned UKF for solving the proposed problem. 

 
Keywords: Smart grid, Data attack, χ2-detector, 

Euclidean detector, Unscented Kalman filter, State 
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1. Introduction 

The smart grid components are increasingly 

dependent on information technology in order to 

achieve maximum flexibility, adaptability and 

efficiency. Today it is possible due the development 

of more advanced sensing, communications and 

control devices. At the same time, security issues 

also arise as more complex information. For 

example, as shown in Figure 1, the combination of 

several physical and cyber components gives rise to 

cyber attack threats in smart grid, which can cause 

power outages and system blackouts, or huge 

economical losses [1]. A faulty sensor or actuator 

may cause process performance degradation, process 

shutdown, or a fatal accident. If actuator faults occur, 

analytical redundancy techniques should be used to 

determine if, where, and how the faults occurred. In 

power networks, state estimation estimates the power 

system operation state based on the real-time electric 

network and its results are necessary for the operators 

to make decisions in order to maintain security and 

performance of the system [2]. 

The presence of any bad measurements in the 

electric power grid affects the accuracy of the state 

estimation process. Bad data could be due to errors in 

the grid, measurement abnormalities caused by meter 

failures, and malicious attacks. Therefore, to achieve 

reliable and secure operation of power grid, it is 

essential for the system operator to detect and 

identify cyber attacks [3,4]. A smart grid is presented 

as complex interdependent networks and targeted 

attacks on smart grids are studied in the paper [5]. 

The importance of detection and identification of 

cyber security issues are presented in [6,7]. To detect 

and identify the false measurements and data in the 

power grid state, several techniques based on the 

statistical test on measurement residuals are 

developed and widely used. For example, false data 

detection in the power grid is analyzed in several 

articles [8,10]. 

One of the well-known approaches is using the 

Kalman Filter as an observer for the purpose of 

parameter estimation and fault detection [11-14].  In 

[11], a mathematical model of the smart gird and 

Kalman filter to estimate the variables of a wide 

range of state processes is given. The estimates from 

the Kalman Filter and the system readings are then 

fed into the χ
2
-detector and Euclidean detector. But, 

for efficient tracking by any filter like Kalman filter, 

noise covariance must be optimized [15]. It is 

identified from the literature that the selection of the 

process noise and measurement noise covariance is a 

main parameter which decides the efficiency and 

accuracy of the Kalman filter. Therefore, the 

optimum selection of process noise and measurement 

noise covariance is studied in this paper to improve 

the accuracy of the Kalman filter. A generalized auto 

covariance least-squares method and neural network 

based tuning of Kalman filter is proposed in [16] and 

[17], respectively.  
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In this work, the well known particle swarm 

optimization (PSO) technique [18-20] is proposed in 

this paper for tuning the Kalman filter. Also, 

Unscented Kalman filter (UKF) [21-22] is proposed 

instead of conventional Kalman filter for the 

estimation process, since it gives better solution with 

nonlinear parameters.  

The organization of this paper is as follows. 

Section 2 illustrates problem formulation by 

considering a power system model. Section 3 

discusses about details of proposed methodology. In 

section 4, test system and the analytical results are 

presented. The conclusions are given in section 5. 

 

2. Problem description 

The proposed work considers some of the cyber 

security problems which are vulnerable in the 

modern smart grid. In this thesis, random fault attack, 

denial of service (DoS) attack and false data injection 

attacks against the state estimation in electric power 

system is presented. The measuring devices of the 

system includes the bus voltages, bus real and 

reactive power injections, and branch reactive power 

flow in each and every subsystem of a power grid. 

State estimation uses power flow models for the 

estimation process. The attack was designed to affect 

the state estimation of the SCADA system. By 

knowing the configuration information of a power 

system, an attacker can inject false measurements 

that will give the wrong information about the state 

estimation process which is not being detected by 

any of the existing techniques for bad measurement 

detection. Here, the attacker tries to find any attack 

vector and inject random fault into the SCADA 

centre as long as it can lead to a wrong estimation of 

state variables. If these bad measurements affect the 

result of state estimation, they can delude the power 

grid control algorithm, which probably ends with 

tragic consequences such as blackouts in large 

topographic areas. Consequently, this could result in 

major financial losses to the social welfare. 

 
 
Figure 1 State estimation diagram 

Figure 1 shows the block diagram of state 

estimation process in a smart grid system. The 

information from the generating stations were sensed 

by various sensors and fed to the state estimator 

which estimates the parameters of the system. The 

estimator detects the faults and fed the output to the 

controller system which gives the command to the 

generating stations. 

2.1 Kalman filter state estimation 

Valuable information about important variables in 

a physical process is provided by state estimator. The 

function of state estimator is shown in Figure 2. In 

the first step of state estimation process, the initial 

value of the predicted state estimate is set equal to 

this initial (zero) value. Then, the predicted 

measurement estimate from the predicted state 

estimate is calculated. Next, the measurement 

estimate error (variable) as the difference between 

the measurement and the predicted measurement is 

determined. Then, the corrected state estimate 
(posteriori estimate) by adding the corrective term to 

the predicted state estimate is calculated. Finally, the 

predicted state estimate for the next time step (k + 1), 

using the present state estimate and the known input 

in process model is calculated. 

 

 
 

Figure 2 KF state estimation process 

 

2.2 Power system state estimation and security 

Before any security assessment can be made or 

control actions taken, a reliable estimate of the 

existing state of the system must be determined. For 

this purpose, the number of physical measurements 

cannot be restricted to only those quantities required 

to support conventional power-flow program are 

confined to the real power and reactive power 

injections at load buses and P, |V| values at voltage 

controlled buses.  

If even one of these inputs is unavailable, the 

conventional power-flow solution cannot be 

obtained. Moreover, the gross error which is one or 



    

 

 

   

   

 

   

   

 

   

       
 

more of the input quantities can cause the power flow 

results to become useless. In practice, other 

conveniently measured quantities such as real power, 

reactive power line flow values are available, but 

they cannot be used in conventional power flow 

calculations. These limitations can be removed by the 

state estimation process. IEEE 9-bus system is 

considered in this work and Newton-Raphson 

method is used for load flow analysis. The problem 

and results are validated through simulation of IEEE 

9 bus test system using MATLAB. In this research, it 

is shown that how the intruder can attack the vector 

quantities, for the cyber security attacks such as DOS 

attack, random fault attack and false data injection 

attack. Unscented Kalman filter (UKF) is used to 

detect and identify these cyber attacks. 

 

3. Proposed methodology 

The Kalman filter along with χ
2
-detector and 

Euclidean detector is used for detection and 

identification of attacks. A state-space model of 

Unscented Kalman filter is developed for the three-

phase sinusoidal voltage equations and the state 

variables are assumed using the voltage sensors 

measurements.  

The UKF estimates the values for the state 

variables based on the system state and the data from 

numerous sensor readings. The estimated values 

generated by UKF and the observed values for the 

state variables are fed into the detector. The detector 

compares the two state vectors. If the two data differ 

from each other then there is a possible attack on the 

smart grid.  The UKF generates estimates for state 

variables using the mathematical model for the power 

grid and the data obtained from the sensor network 

deployed to monitor the power grid.   

The χ
2
-detector is a typical choice for the UKF 

estimators. Here, the residue of the UKF compares 

the estimated value with the threshold obtained from 

the standard χ
2
-table.  Attacks such as the DoS attack 

and random attack are readily detected by the UKF 

and χ
2
-detector combination. However, the false data 

injection attack can bypass such detectors and may 

remain undetected. Hence, Euclidean distance 

detector which exactly calculates the difference 

between the estimated and observed voltage signal is 

proposed to detect false data injection attack. 

3.1 Unscented Kalman Filter 

The Kalman filter (KF) is well known for signal 

estimation applications while the system model is 

linear. When, predict and update functions are highly 

non-linear, the KF cannot give up good performance 

because the linearization of the underlying non-linear 

model. Therefore, when the system model and 

measurement is non linear, UKF provides accurate 

estimation. UKF determines a minimal set of sample 

(sigma) points around the mean. Then the non-linear 

functions are used to propagate these sigma points, 

from which the mean and covariance of the estimate 

are then recovered. This results in a filter which more 

accurately captures the true mean and covariance. 

This technique move out the requirement to explicitly 

calculate Jacobians, which is a bottleneck task for 

complex functions. 

The sensor readings or the observations are 

forwarded to the estimator at regular interval of time. 

At each time step, the estimator of the system 

generates estimated readings based on the previous 

time step and the real time sensor readings. 

In the UKF prediction state, the update is done 

independently in co-ordination with a linear update. 

The mean and covariance of the process noise is used 

in increasing the estimated state and covariance as 

given in Equations (1- 2) 
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The predicted state and covariance are produced 

by recombination of the weighted sigma points as 

given in Equations (3 - 4). 
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Next, the same augmentation of the predicted state 

and covariance is done with the mean and covariance 

of the measurement noise as given in Equations (5 - 

6). 
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The predicted measurement and predicted 

measurement covariance are generated recombining 

the weighted sigma points as given in Equations (7 - 

8). 
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The state–measurement cross covariance matrix is 

obtained as given in Equation (9). 
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3.2 χ
2
-detector and Euclidean detector 

The χ
2
-detector is a conventional detector used 

with Kalman filter. The chi-square goodness-of-fit 

test is used to find and compare the observed sample 

distribution with the expected probability 

distribution. The χ
2
-detector, constructs χ

2
 test 

statistics from the Kalman filter and compares them 

with the threshold value g(t). The χ
2
-detector 

compares g(t) with previously computed threshold 

value using the χ
2
 –detector table to identify a failure 

or attack. The χ
2
 test is long-term test because, at 

each detection step, all integrated effects since 

system start time are considered. This property 

makes it very useful for the fault detection in smart 

grid which consists of sensors that are subject to soft 

failures like instrument bias shift. Another advantage 

of χ
2
 - detector is its computational complexity.  

The parameters required to perform the test are 

already generated by the Kalman filter making it 

compatible with the Kalman filter. Furthermore, the 

threshold for the detector can be easily obtained from 

the χ
2
 table making the threshold computation 

relatively easy. In the most of works done earlier, the 

threshold value is randomly chosen such that error 

rate will be less than 5%. If it is optimized, then the 

error will be reduced below 5% and then the 

accuracy of Kalman filter will get improved.  

Though χ
2
-detector has a high noise tolerance and 

work in most of the cases but attacks such as false 

data injection attack fails to get detect. The false data 

injection attack is crafted such that it can bypass the 

statistical detector, such as χ
2 

-detector. Therefore, to 

detect false data injection attack Euclidean detector, 

which calculates the deviation of the observed data 

from the estimated data is proposed [11]. Here, the 

sinusoidal signals from the state estimates are 

reconstructed and then, correlated them with the 

measurements obtained from the sensors. 

3.3 Tuning of the filter 

The basic filter operations are the state evaluation, 

Kalman gain evaluation, and the state and covariance 

updates. Most of the previous works, it is assumed 

that the estimation of Kalman gain can converge 

within few steps and operate in steady state. The 

filter tuning searches for every variant of the Kalman 

filter which can be minimized but not completely 

ignored in order to get near optimal solutions. It 

should have the ability to estimate all the variables 

from the observables and should be self consistent in 

estimating all the unknowns.  

Most of the earlier research work, have 

concentrated their effort in using simulated data to 

tune the filter off line and these values will be used 

later for online and real time applications. There is no 

proper conventional technique to find measurement 

noise covariance (R) and process noise covariance 

(Q). Here, we propose artificial intelligent method to 

reduce further computational time and improve 

accuracy of the Kalman gain estimation by optimal 

estimation of noise covariances. Tuning of the filter 

is mainly done for the estimation of the noise 

covariance matrices. The performance of a Kalman 

filter mainly depends largely on the accuracy of R 

and Q. Incorrect priori knowledge of noise 

covariance may lead to performance degradation. 

Sometimes, even it can leads to practical divergence. 

Therefore, an intelligent method of estimation of 

these matrices becomes very important for online 

operation. Measurements can be executed during the 

operation of the filter under various noise conditions 

and measurement noise covariance.  

The filter tuning is a process of obtaining 

parameters such as process noise covariance matrices 

and measurement noise covariance matrix that give 

the best filter performance. Each time during 

optimization procedure we have to run the Kalman 

filter on all available data. Proper initialization of this 

is very essential as it is necessary to minimize the 

error. Therefore, the tuning of the filter performed 

using the well known particle swarm optimization 

algorithm. 

3.4 Applying PSO in filter tuning 

PSO is used in this work to tune the filter 

covariances. Measurement noise covariance and 

process noise covariance of UKF are optimized that 

give the best filter performance in mean square error 

sense. Typically, this kind of problems of designing a 

filter with optimal tuning parameters was left up to 

engineering intuition and trial and error method that 



    

 

 

   

   

 

   

   

 

   

       
 

do not guarantee best filter performance due to large 

number of parameters to be tuned. This requires a 

significant computational time since for example in 

order to find a global minimum of a smooth function 

of parameters. Therefore, PSO is proposed in this 

article to optimize the gain value of the filter. The 

explanation of PSO technique is avoided here, since 

it is a well known optimization technique. 

 

4. Results and discussion 

The input of the proposed system is verified using 

MATLAB simulation. The random attack and DoS 

attack are detected using χ
2-

detector and false data 

injection attack is identified using Euclidean detector.  

The estimated values obtained in each case are 

compared with the input signal. The χ
2
-detector 

compares the threshold value, g(t) with the 

predetermined threshold value from the χ
2 
table. 

4.1 χ
2
- detector test 

The χ
2
 distribution method helps to find the best-

fit value. In the simplest case, a linear fit is needed 

for the data so a range of slopes are tested. The 

program is written does the chi-squared calculation 

for a given slope, puts the value in a vector, and then 

repeats for the next slope. In the end, a series of chi-

squared values corresponding to the slopes are 

obtained. In the assumption, uncertainty in y-

direction is much larger than the uncertainty in the x-

direction. 

Figure 3 shows the graph of chi-square versus 

slope. The slope is the best method to know the 

minimum chi-squared value for the set. Also to find 

the best fit, the best chi-squared value is compared 

with the number of data points; if the best chi-

squared is less than our number of data points then 

our model is good. For this data set, the minimum chi 

squared is greater than the number of data points 

which means it’s not a great fit, but it’s not terrible 

either. The fact that the minimum χ
2
 is less than twice 

the number of data points means that each point was 

an average less than two sigma from the line. From 

this plot, we can see that the minimum χ
2
 is a little 

more than 1500, and the slope is nearly 2. 

Information we can get from the chi-squared analysis 

is whether or not this best-fit line agrees with our 

theoretical prediction. The graph is used to find the 

range of slopes within χ
2
min± 1.  If the theoretical 

prediction falls in that range, then obtained best fit 

line agrees with the theoretical model. 

 

 
Figure 3 χ

2
 versus slope 

 

 
Figure 4 Likelihood versus slope 

 

Figure 4 shows the graph between the likelihood 

versus slope. The likelihood is the probability that 

this best-fit line could have generated the data 

collected. The likelihood is a Gaussian that peaks at 

the slope corresponding to the min chi-squared. The 

width (sigma) of the Gaussian is determined by 

finding the slopes corresponding to χ
2

min± 1. From 

this plot, we can see that the maximum point is 2. 

4.2 No fault condition 

The input data are obtained from load flow 

analysis of the IEEE 9 bus system using Newton-

Raphson method and the voltages are taken as the 

base case. These data are used as the state parameter 

for the Kalman filter estimator. The estimated values 

obtained from the Kalman filter estimator overlap 

with the input signal which is a sinusoidal signal, 

denoting there is no difference between the estimated 

and the observed value. Hence, there is no fault in the 

system and there won’t be any changes in the system 

parameters. Therefore, the output from the power 

plant will be similar to that of the input signal.  

Figure 5 shows the graph of the fitness function 

value versus generation. Here, the error is taken as 

the internal absolute error. The error value of the 

system is optimized by the PSO to get the gbest value. 

The graph shows that the error is minimized to zero. 

This helps to improve the filter performance by 

varying the Kalman gain (k). 
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Figure 5 Fitness value versus generation 
 

 
Figure 6 Voltage estimation during no fault condition 

 
Figure 7 χ

2
 – detector under no fault condition 

 

Figure 6 shows the output waveform of the 

estimated value of the system when there is no fault. 

Here, the estimated value will be equal to the input 

signal due to the absence of the fault. Figure 7 shows 

the output waveform of a smart grid system when 

there is no fault. Here, g(t) which is calculated using 

the χ
2
–detector will also be equal to the threshold 

value. 

4.3 Random attack 

In this case, the intruder can easily manipulate the 

sensor readings by including random attack vector 

model. An unknown data which may be due to the 

malfunctioning of the switching devices is injected 

into the system. By giving a random value after a 

period of time as expressed in Equation (10), the 

estimated value gets varied from the input signal. 

       𝑦′ 𝑡 = 𝐶 𝑡 𝑥′ 𝑡 + 𝑣 𝑡 + 𝑦(𝑡)                (10) 

Where, 

 y(t) = random attack generated in the system, 

 𝑦′ 𝑡   = system observations during attack. 

 𝑥′ 𝑡  = System states during attack and 

 𝐶 𝑡  = [coswt – sinwt] 

These random attacks could be generated at any 

point in time and could be a long-term continuous 

attack or a short attack. The random attack is 

modelled in the system by introducing random value 

after the period of time. Therefore, the estimated 

value gets varied from the input signal.  If there is a 

slight difference between the estimates and the input 

signal, the filter works iteratively by correcting its 

estimates using the state space model and the 

measurements are obtained. 

 
Figure 8 Voltage estimation during random attack 

 

 
Figure 9 Random attack detection using χ

2
–detector 

 

Here, the random attack is injected into the system 

after a particular period of time. Therefore, the input 

from the generating plant gets varied after a period a 

time due to fault in the switching devices. The 

change in the input signal affects the system and 

causes random changes in the system parameters. 

The Figure 8 and 9 show the output waveforms for 

the continuous random attack system using the χ
2
- 

detector. Difference between the input signal and the 

estimated value is clearly noticed, when the random 

noise is introduced into the system. 

4.4 Denial of service attack 
Denial of service attack means, the attacker will 

flood packets in the network for compromising 

devices to prevent data transfer and for jamming the 

communication system. Since, one of the primary 

security objectives of the smart grid operation is 

availability, DoS attacks which have an immediate 

impact on the availability of communication systems 

and control systems become the primary network 

security threats in the smart grid. Most of the DoS 

attacks come under passive detection method that 

keeps monitoring the network status, such as system 
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voltage, phase angle etc. The detector raises an attack 

alarm once there is an evident mismatch between 

new samples and threshold values. 

 
Figure 10 Voltage estimation during DoS attack 

 
Figure 11 DoS attack detection using χ

2
–detector 

 

Here, the lack of sensor information is considered 

as the denial of service attack and therefore after a 

particular interval of time, the amplitude of the input 

signal is minimised. Due to the lack of the input 

signal, the estimated signal will also be reduced after 

a particular period of time. Figure 10 shows the 

output waveform of estimated voltage value during 

DoS attack. The DoS attack is performed after a 

particular period of time. Therefore, after the 

particular time (ie.1.5sec), the estimated value gets 

changed from the input signal. The estimator output 

during DoS attack is shown in Figure 11. After a 

particular period of time, there will a lack of sensor 

data and therefore the input data value decreases 

which may be nearly zero. Due to this, the g(t) may 

gets varied from the threshold value as shown in 

Figure 11. 

4.5 False data injection attack 
 It is assumed that the false data that injected into 

the power system by a hacker who knows the system 

model parameters. Therefore, false data are injected 

into the power plant subsystem after a period of time. 

So, we can expect variation in the estimated value. 

As discussed in section 3.2, the Euclidean detector is 

used instead of χ
2
- detector to identify the false data 

injection attack. 

 The output waveform of the estimated value 

during false data injection attack in the smart grid is 

shown in Figure 12.  Because of the false data 

injection, the estimated value does not match with the 

input signal. Detection of false data injection attack 

using Euclidean-detector is shown in Figure 13. It is 

observed that the estimated value changes from the 

input signal when false data are injected into the 

system. 

 
Figure 12 Voltage estimation during false data 

injection attack 

 

 
Figure 13 Detection of false data injection attack 

 

 The computational performance of PSO tuned 

UKF is compared with conventional UKF as given in 

Table 1. In the case of PSO tuned UKF, the 

measurement noise deviation is almost zero and 

hence the estimation error is zero. 

 
Table 1 
 Performance analysis 

Parameter UKF PSO-UKF 
 

Measurement 

noise deviation 
 

 

0.08 

 

1×10
-6

 

Estimation error 0.28 0.00001 

Tuning time (sec)    - 0.2 

 

5. Conclusions 

Some of the major cyber security issues such as 

random fault attack, denial of service attack and false 

data injection attacks are analyzed in this work. 

These cyber attacks are detected using Unscented 

Kalman filter together with the χ
2
–detector and 

Euclidean detector. The process noise covariances 

and the measurement noise covariances of the 
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Kalman filter are tuned using the PSO technique 

which helps to improve the Unscented Kalman filter 

performance by finding the proper estimation value. 

To exhibit the validity of the proposed techniques, 

simulations are carried out on IEEE 9 bus test 

system. 
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