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Abstract: In this paper, usin a Lyapunov-like function, we 
derive a disturbance observer based iterative learning 
control scheme for the trajectory tracking problem of 
rigid robot manipulator. In this control scheme, the whole 
control law consists of two parts, the feedback control 
law, plus an iteratively updated term represents the 
estimated disturbance. The feedback control law using in 
this paper is a computed torque control, without 
compensating for the gravity forces. Using Lyapunov 
method, the asymptotic stability of the whole system is 
guaranteed, and the external disturbances with the 
gravity forces are compensated. Simulation results on the 
PUMA 560 robot manipulator, show the asymptotic 
convergence of tracking error, when the Coulomb and 
Viscous friction is considered as an external disturbance.  
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1. Introduction 
     During the last decade the class of rigid robot 
systems has been the subject of intensive research in 
the field of systems and control theory, particulary 
owing to the inherent nonlinear nature of rigid 
robots. For the same reason, these systems have 
widely been used to exemplify general concepts in 
nonlinear control theory. As a result of this 
excessive research activity a large variety of control 
methods for rigid robot systems have been proposed 
[1,2,3]. 
     Since robot manipulators are generally used in 
repetitive tasks, one should take advantage of the 
fact that the reference trajectory is repeated over a 
given operation time. In tis context, iterative 
learning control ‘ILC’ is an attractive technique 
when it comes to dealing with systems that execute 
the same task repeatedly over a finite time interval. 
The key feature of this technique is to use 
information from the previous operation in order to 
enable the controlled system to perform 
progressively better from operation to operation. 
This technique has been the center of interest of 
many researchers over the last two decades (see for 
instance [4,5,6,7,8]. On the other hand, another type 
of ILC algorithms has been developed using 
Lyapunov-like methods. In fact, in [9], Xu and Qu 
utilised a Liapunov-based approach to illustrate how 

an ILC can be combined with a variable structure 
controller to handle a broad class of non linear 
systems, in [10], Ham et al. utilised Lyapunov-based 
techniques to develop an ILC that is combined with 
a robust control design to achieve global uniformly 
ultimately bounded link position tracking for robot 
manipulators, the applicability of this design was 
extended to a broader class of nonlinear systems in 
[11]. Using Lyapunov-like function, Tayebi derived 
in [12] an adaptive ILC scheme for the trajectory 
tracking problem of rigid robot manipulators. 
     The control problem for a nonlinear system under 
disturbances has been developed and applied in 
engineering over two decades. Nakao et al.[13] 
proposed firstly the concept of disturbance observer 
‘DO’ as compensating unknown disturbance. 
Furthermore, friction is a cammon phenomenon in 
mechanical systems. One of the most promising 
methods is observer-based control, where a variable 
structure DO has been proposed [14], and a 
nonlinear observer for a special kind of friction, i.e., 
Coulomb friction, has been proposed by Friedland 
and Park [15]. It has been further modified and 
implemented on robotic manipulators by Tafazoli et 
al. [16]. In [17] a DO based control approach for 
nonlinear systems under disturbances has been 
proposed, but only semiglobal stability condition of 
the composite controller-observer has been 
established. 
     To cancel out the disturbance, we presente in this 
paper a disturbance observer based learning control. 
The proposed control scheme comprises a feedback 
control law, and an iteratively updated term 
represents the estimated disturbance. The asymptotic 
stability condition of the proposed controller is 
established, this result is based on Lyapunov theory. 
Simulation results on the PUMA 560 robot 
manipulator show the asymptotic convergence of 
tracking error, when the Coulomb and Viscous 
friction is considered as an external disturbance. 
 
 
 
2. Dynamic equations for robot manipulators 
     We consider a robot manipulator that is 
composed of serially connected rigid links. The 



motion of the manipulator with n-links is described 
by the following dynamic equation 
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where t denotes the time and the nonnegative integer 

 denotes the operation or iteration number. The 
signals , , denote the link 
position, velocity, and acceleration vectors, 
respectively.  represents the link 

inertia matrix, C  represents 

centripetal-Coriolis matrix, G represents 

the gravity effects,  represents the torque 
input vector, and  is a disturbance torque 
or force vectore. It should be noted that  has 
different meanings in different observer 
applications. For example, it can be friction in 
friction compensation, reaction torque or force in 
force control, and unmodeled dynamics in 
independent joint control.      In this paper, all of 
them are considered as disturbances, because, a 
general observer will be derived.  
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    In the sequel, , , denote the 
desired link position, velocity, and acceleration 
vectors, respectively.The norm of a vector 
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Aand the norm of a matrix  as 
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with  denotes the maximum eigenvalue of . (.)maxλ A
     The dynamic equation of (1) has the following 
properties [18,19,20] that will be used in the 
controller development and analysis. 
P1:   The inertia matrix is symetric, 
positive definite and bounded as 
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P2:  is globally Lipschitz continuous in their 
arguments as follows 
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where l  a positive constant.                          m

P3:     is globally Lipschitz continuous in their 
arguments and bounded as    
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where  and  denote known positives bounding 
constants. 
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In this paper, the following lemma is used 

Lemma[19]   The inertia matrix has the 
following property  
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The following assumptions are imposed. 
A1: The disturbance  is repetitive and bounded 
as follows 
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A2: The reference trajectory and its first and second 
time-derivative  are bounded, and the resetting 
condition is satisfied, i.e. 
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     Our objective is to design a control law  

guaranteeing the convergence of   and  to 
the disired trajectory  and disired velocity 

, respectively, for all   when  tends 
to infinity. 
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In the following, we will introduce a tracking 
control algorithm which is referred to as the 
disturbance observer based learning control, and the 
asymptotic stability is guaranteed. 
 
3. Disturbance observer based iterative learning 
control 
     We propose the following control   
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where   is the tracking error vector, 

 is the velocity error vector, 
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Theorem 
     Given the robot dynamics (1) with the tracking 
controller (13), where  is given by the iterative 
learning law (14), and let assumptions (A1-A2) be 
satisfied.  
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satisfied. Which completes the proof. 

Consider the Liapunov function candidate 
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Acoording to properties (1, 3), using assumptions 
(A1-A2), and lemma, we obtain 
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4. Numerical simulation results 
     Consider the first three joints (waist , 
schoulder , elbow ) of the PUMA 560 arm. 
The dynamic model for PUMA 560 can be written 
as (1).  

1q

2q 3q

The elements of ,  and G  are given 
in appendix. 
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     The Coulomb and Viscous friction is considered 
as an external disturbance. 
 
 
A. Friction simulation 
     The external disturbance considered is Coulomb 
and Viscous friction, given by 
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The parameters for first, second and third links in 
the simulation are given by 
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     There are some problems in using the friction 
model (30) in simulation directly. One is due to the 
discontinuity of the friction characteristics at zero 
velocity, a very small step size is required for testing 
zero velocity. The other is that when the velocity is 
zero, or the system is stationary, the friction is 
indefinite and depends on the controlled torque. In 
the simulation, to improve the numerical efficiency, 
a revised friction model, which is modified from 
[21], is adopted. The revised friction model can be 
described by  
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 is a small positive scalar, and T  is given by 
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where K  is a positive scalar. 
     When the velocity is within a very small area 
near zero, defined by l , the friction  is equal to 
the applied torque T. When the velocity is greater 
than this, the second term in the above expression 
vanishes and the friction d  given by this revised 
model is equal to the friction given by (30). In the 
simulation,  is chosen as 0.1. 
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B. Simulation results 
Simulation parameters: η =diag{4,4,4}, σ =25, 
Kv=diag{27,27,27},Kp=diag{675,675,675}.  
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The desired trajectories are 

         
πππ += )2(sin2)(1 ttq d   rad   ;        0 ≤ t ≤ 3. 

          rad   ;        0 ≤ t ≤ 3. 1)2(sin2.0)(2 += ttqd π
π

         
ππ += )2(sin2)(1 ttq d   rad   ;        0 ≤ t ≤ 3.     

     Figure (1-6) show the simulation results of real 
and desired position trajectories for the 1st and 40th 
iteration of each joint. We can see that the real 
position follows the desired position, through 
learning iterations. In figure (7-9), it is shown that 
the position error of the 40th operation is reduced 
much in contrast to the first operation for each joint. 

Figure (10-15) show the convergence of the real 
velocity to desired velocity, through iteration 
number. Therefore, the control algorithm works 
well.  
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Fig.1 Real and desired position for first joint (k=1) 
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Fig.2 Real and desired position for first joint (k=40) 
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Fig.3 Real and desired position for second joint (k=1) 
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Fig.4 Real and desired position for second joint (k=40) 

0 0.5 1 1.5 2 2.5 3
1.5

2

2.5

3

3.5

4

4.5

5

Time(sec)

P
os

iti
on

3(
ra

d)

q3 

q3d k=1 

 
Fig.5 Real and desired position for third joint (k=1) 
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Fig.6 Real and desired position for third joint (k=40) 
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Fig.7 Position error for first joint (k=1 and k=40) 
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Fig.8 Position error for second joint (k=1 and k=40) 
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Fig.9 Position error for third joint (k=1 and k=40) 
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Fig.10 Real and desired velovity for first joint (k=1) 
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Fig.11 Real and desired velovity for first joint (k=40) 
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Fig.12 Real and desired velovity for second joint (k=1) 
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Fig.13 Real and desired velovity for second joint (k=40) 
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Fig.14 Real and desired velovity for third joint (k=1) 
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Fig.15 Real and desired velovity for third joint (k=40) 

 

5. Conclusion 
     This paper has presented a disturbance observer 
based iterative learning control scheme for the 
position tracking problem of rigid robot 
manipulators with subject to external disturbances. 
The proposed controller is based upon a feedback 
controller, which is given by a computed torque 
control without compensating for the gravity terms, 
plus an iteratively term represents the disturbance 
estimated. Therefore, the external disturbances with 
the gravity forces are compensated, and the 
asymptotic stability is guaranteed. The proof of 
convergence is based upon the use of a Lyapunov-
like positive definite sequence, which is shown to be 
monotonically decreasing under the proposed 
control scheme. Simulation results on the PUMA 
560 robot manipulator show the asymptotic 
convergence of tracking error, when the Coulomb 
and Viscous friction is considered as an external 
disturbance.           
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Appendix 
     The dynamic model for PUMA 560 can be 
written as (1). We Consider the first three joints. 

The elements of M(q) are given by 
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                              PUMA 560 robot. 


