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Abstract: In this paper, we present the design  of  a  low 

power floating-point  adder for DSP and FPGA application.  

We provide synthesis results shown the estimated power 

consumption for our design when it is pipelined and glitching 

and re-timing and clock gating. Our  work  is  an  important  

design  supply for  development of this unit design on DSP. All 

components  within  the FP adder and known algorithm are 

researched and design to provide elasticity to designers as an 

alternative to brilliant property where they have no control 

over the design. Each of the operation is researched for 

different design and then result onto a Altera FPGA device to 

be chosen for power efficient. Our design of the basic 

algorithm occupied 370 slices and had an overall delay of 31 

ns. The basic algorithm was pipelined into five stages to run at 

100 MHz which took an area of 324 slices and power is 

30mw1. 
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1. INTRODUCTION 

       High performance floating point adders are essential 

building blocks of microprocessors and floating point DSP 

data paths. Since the hardware implementation of floating 

point addition (FP addition) involves the realization of a 

multitude of distinct data processing sub-units that endure a 

series of power consuming transitions during the course of 

their operations [1–4], the power consumption of floating point 

adders are, in general quite significant in comparison to that of 

their integer counterparts.Owing to the presence of a relatively 

high traffic of floating point additions in microprocessors[5–7] 

and DSPs. In digital CMOS implementations, the power 

consumption and speed performance of functional units are, to 

a large extent, susceptible to algorithmic design  decisions [8]. 

These decision sinfluence the switching activities, fan outs, 

layout complexity, logic depths, operand scalability and 

pipeline ability of functional units. Among the above, 

switching activities, fan outs and layout complexity are 

directly related to the power consumption. The higher the 

values of these parameters, the higher the power consumption. 

Architectural design for low power operation targets the 

minimization of these parameters. Traditionally, the 

 
 

architecture of floating point adders had been centered around 

the sequential machine philosophy. With an ever escalating 

demand for high performance floating point units, newer 

design approaches are emerging[5–7,9–11]. With new designs, 

throughput acceleration is achieved through operational 

parallelism. In [5,6] and [7] Oberman etal.  proposed a novel 

architecture that incorporates concurrent, speculative 

computation of three possible results of an FP addition. These 

results are typified by the time complexities of their 

operations: the hardware realization of ceratin cases of floating 

point addition can be simplified so that the  execution time of 

such operations are reduced. With this, the variable latency 

architecture reported in [5, 6] and [7]  produces   results within 

1, 2 or 3 cycles, by virtue of which the average latency of FP 

additions is reduced. The fusion of multiply and accumulate 

operations in floating point    multiply-accumulate (MAC) 

units [9], and the concurrent evaluation of leading zeros with 

significand addition (leading zero anticipation) [9–11] are 

other notable examples that exploit parallelism for latency 

reduction. The operation of rounding is an integral part of 

floating point addition. While MAC fusion and leading zero 

anticipatory logic provide throughput acceleration, speculative 

computing for rounding [12] also enhances the throughput of 

floating point units. Though the concept of operational 

parallelism can be put to advantageous use as far as throughput 

acceleration is concerned, and the trading of speed 

performance for power reduction is also not infeasible, this 

approach, however cannot guarantee power reduction in 

performance critical applications. The  main objective of their  

implementation  was to achieve IEEE standard accuracy with 

reasonable  performance parameters. This is claimed  to  be 

the first IEEE single precision floating-point adder 

implementation  on a FPGA, before this, implementation with 

only 18-bit word length was present [2]. Floating-point 

addition is the  most  frequent  floating-point operation and 

accounts  for almost half of the scientific operation. Therefore, 

it is a fundamental component of math coprocessor, DSP  

processors, embedded arithmetic processors, and data  

processing units. These components demand high numerical 

stability and accuracy and hence are floating-point based. 

Floating-point addition is a costly operation in terms of 

hardware and  timing  as it  needs  different  types  of  building  

blocks  with variable latency. A lot of work has been done to 

improve the overall latency of    floating-point adders. Various 

algorithms and design  approaches have been developed by the 

Very Large Scale Integrated(VLSI) circuit community           

[3-4,9-12] over the span  of  last two decades. Binary floating-



 

point arithmetic is usually sufficient forscientific and  statistics  

applications. However, it is not sufficient for many commercial      

applications and database systems, in which operations often 

need to mirror manual calculations. Therefore, these     

applications often use software to perform decimal floating -

point arithmetic operations. Although this approach  eliminates 

errors due  to converting  between binary and decimal numbers 

and provides decimal rounding to mirror manual calculations, 

it results in long latencies for numerically intensive 

commercial  applications. Because  of the growing importance 

of  decimal floating-point arithmetic,  specifications  for  it  

have  been  added  to  the  draft  revision  of  the  IEEE-754  

Standard for  Floating-Point Arithmetic (IEEE P754)[5]. The 

most important functionality of FPGA devices  is  their  ability 

to reconfigure when needed according to the design need. In 

2003, J.Liang, R.Tessier and O.Mencer[6] developed a tool 

which gives the user the option to create vast collection of 

floating-point units with different throughput, latency, and area 

characteristics. One of the most recent works published  

related to our work is published by G.Govindu, L.Zhuo, 

S.Choi, and V.Prasanna[7] on the analysis of high-

performance floating-point arithmetic  on  FPGA. 

2. ALGORITHM OF FLOATING POINT ADDER 

 

     In this section we express design and implementation  

algorithm  of floating point adder with single precision .  

A. Fixed Point and Floating Point Representations 

      Every real number has an integer part and a fraction part; a 

radix point is used to differentiate between them. The number 

of binary digits assigned to the integer part may be different to 

the number of digits assigned to the fractional  part. A generic 

binary representation with decimal conversion is shown in 

table 1. 

 
Table 1: Binary representation and conversion to decimal of a numeric. 

Number Integer part Binary 

point 

Fraction part 

Binary 32  
22  

12  
02  

. 12  
22  

32  

decimal 8 4 2 1 . 

2

1

 4

1

 8

1

 
 

B. Fixed-Point Representation   

     A representation, in which a real number is represented by 

an approximation to some fixed number of places after the 

radix or decimal point, is called a fixed-point representation. 

Usually the radix point is placed next to the least significant bit 

thus only representing  the  integer  part.  The  main  advantage  

of  this  kind  of  representation  is  that integer arithmetic can 

be applied to them and they can be stored using small values. 

This helps  making the operations faster and area efficient. The 

main  disadvantage  is  that  a fixed-point  number  has limited 

or no flexibility, i.e., number of significant bits to the right  of  

the  decimal  point.  Some of the other disadvantages are that 

the arithmetic operations based on this representation  can  go  

into  overflow  and  underflow often.  The fixed-point number 

also has a limited integer range and it is hard to represent very 

small and big number in the same representation. These are 

some of the reasons why floating-point representation and 

arithmetic was evolved to take care of these disadvantages. 

C. 2’s Complement Representation 

    In order to represent both positive and negative fixed-point 

numbers, 2’s complement representation is  used. Positive 2’s 

complement numbers are represented as simple binary. 

Negative number is represented in a way that when it is  added  

to a  positive number of  same magnitudes  the answer is zero. 

In 2’s  complement  representation,  the most significant bit is 

called the sign bit. If the sign bit is 0, the number is non-

negative ,i.e., 0 or greater. If the sign bit is 1, the number is 

negative or less than 0. In order to calculate a 2’s complement 

or a negative of a certain binary integer number, first 1’s 

complement, i.e., bit inversion is done and then a 1 is added to 

the result.   

 

 

D. Floating-Point Representation 

     In general, a floating-point number will be represented  
Edddd  .... , where dddd .... is called the significand and 

has p  digits also called the precision of the number, and  is 

the base being 10 for decimal, 2 for binary or 16 for 

hexadecimal. If  = 10 and p  =  3,  then the number 0.1 is 

represented as 11000.1  . If  =  2  and p = 24,  then  the 

decimal  number 0.1 cannot be represented exactly, but is 

approximately 
-42 0110110011001101.10011001  . This  

shows  a  number  which  is  exactly  represented in one format 

lies between two floating-point numbers in another format. 

Thus the most important factor of floating-point representation 

is the precision or number of bits used to represent the 

significands. Other important parameters are maxE  and minE , 

the largest and the smallest encoded exponents for a certain 

representation, giving the range of a number. 

 

E. IEEE Floating Point Representation 

    The Institute of Electrical and Electronics Engineering 

(IEEE) issued 754 standard for binary floating-point arithmetic 

in 1985  [15]. This standardization was needed  to eliminate 

computing industry’s arithmetic vagaries. Due to different 

definitions used by different vendors, machine specific 

constraints were  imposed  on programmers  and clients. The  

standard  specifies basic  and extended floating-point number 

formats, arithmetic operations, conversions between various  

number  formats, and  floating-point exceptions. This section 

goes over the aspects of the standard used in implementing and 

evaluating various floating-point adder algorithms. 

 



 

F. Basic Format 

      There are two basic formats described in IEEE 754 format, 

double-precision using 64-bits and single-precision using 32-

bits. Table 2 shows the comparison between the important 

aspects of the two representations. 

 
Table 2: Single and double precision format summary 

Format Precision Emax Emin  Exponent 

width 

 

Format 

width 

 

Single 

 

24 +127 -126  8 32 

 

Double 

 

53 +1023 -1022  11 64 

 

   The single-precision floating-point number is calculated 

as 127)-(Es 2 × 1.F ×  (-1) The sign bit is either 0 for non-negative 

number or 1 for negative numbers. The exponent field 

represents both positive and negative   exponents. To do this, a 

bias is added to the actual exponent. For IEEE single-precision 

format, this value is 127, for example, a stored value of 200 

indicates an exponent of  (200-127),  or 73. The mantissa or 

significand is composed of an implicit leading bit and the 

fraction bits, and represents the precision bits of the number. 

Exponent values (hexadecimal) of 0xFF and 0x00 are reserved 

to encode special numbers such as zero, denormalized 

numbers, infinity, and NaNs. The mapping from an encoding 

of a single-precision floating-point number to the  number’s  

value  is  summarized in Table 3.        

                

 
Table 3: IEEE 754 single precision floating-point encoding 

Sign Exponent Fraction Value Description 

S 0Xff 0x00000000  s)1(
 

Infinity 

S 0xFF F≠0 NaN Not a Number 

S 0x00 0x00000000 0 Zero 

S 0x00 F≠0     2 × 0.F × (-1) 126)-(Es

 

DenormalNum 

S 0x00< E 

< 0xFF 

F       2 × 1.F × (-1) 127)-(Es

 

NormalNum 

 

G. Normalized numbers 

     A floating-point number is said to be normalized if the 

exponent field contains the real exponent plus the bias other 

than 0xFF and 0x00. For all the normalized numbers, the  first 

bit just left to the decimal point  is  considered to be 1 and not 

encoded  in  the floating-point representation and thus also 

called the implicit or the hidden bit. Therefore the single-

precision representation only encodes the lower 23 bits. 

 

 

H. Denormalized numbers 

     A floating-point number is considered to be denormalized 

if the exponent field  is 0x00 and the fraction field doesn’t 

contain all 0’s. The implicit or the hidden bit is always set to 0. 

Denormalized numbers fill in the gap between zero and the 

lowest normalized number. 

I. Infinity 

    In single-precision representation, infinity is represented  by 

exponent field of 0xFF and the whole fraction field of 0’s. 

J. Not a Number (NaN) 

    In single-precision representation, NaN is represented by 

exponent field of 0xFF and the fraction field that doesn’t 

include all 0’s. 

 

K. Zero 

     In single-precision representation, zero is represented by 

exponent field of 0x00 and the whole fraction field of 0’s. The 

sign bit represents -0 and +0, respectively.   

L. Rounding Modes 

       Rounding takes a number regarded as infinitely precise 

and, if necessary, modifies it to fit in the destination’s format 

while signaling the inexact exception. Thus the rounding mode 

affects the results of most arithmetic operations, and the 

thresholds for overflow and underflow exceptions. In IEEE 

754 floating point representation, there are four rounding 

modes defined:  round towards nearest even (REN), round 

towards -∞ (RP), round towards +∞ (RM), and round towards 

0 (RZ). The default rounding mode is REN and  is  mostly 

used in all  the  arithmetic  implementations  in  software  and  

hardware.  In order to evaluate different adder algorithms, we 

are also interested in only the default rounding mode i.e. REN. 

In this mode, the  representable value nearest to the infinitely 

precise result is chosen. If the two nearest representable values 

are equally near, the one with its least significant bit equal to 

zero is chosen. 

M. Exceptions 

       The IEEE  754 defines five types of exceptions: overflow, 

underflow, invalid operation, inexact result, and division-by-

zero. Exceptions are signaled by setting a flag or setting a trap. 

In evaluating hardware implementations of different floating-

point adder algorithms, we only  implemented overflow and 

underflow flags in our designs as they are the most frequent 

exceptions that occur during   addition. 

 

 

 

N. Standard Floating Point Addition Algorithm  

      This section will review the standard floating point  

algorithm  architecture, and the hardware modules designed as 

part of this algorithm, including their function, structure, and 

use. The standard architecture is the baseline algorithm for 



 

floating-point addition in any kind of hardware and software 

design [16].   

3. ALGORITHM 

 

   Let  s1; e1; f1 and  s2; e2; f2  be the signs,  exponents,  and  

significands  of  two  input floating-point operands, N1 and 

N2, respectively. Given these two numbers, Figure 1 shows the 

flowchart of the standard floating-point adder algorithm. A 

description of the algorithm is as follows. 

                                                     
Fig. 1. Flow chart for standard floating-point adder 

 

1.   The two operands, N1 and N2 are read in and compared 

for denormalization and infinity. If numbers are     

denormalized, set the implicit bit to 0 otherwise it is set to 1. 

At this point, the fraction part is extended to 24 bits.  

2.   The two exponents, e1 and e2 are compared using 8-bit 

subtraction. If e1 is less than e2, N1 and N2 are swapped i.e. 

previous f2 will now be referred to as f1 and vice versa.  

3.  The smaller fraction, f2 is shifted right by the absolute 

difference result of the two exponents’ subtraction. Now both 

the numbers have the same exponent.  

4.   The two signs are used to see whether the operation is a 

subtraction or an addition.  

5.   If the operation is a subtraction, the bits of the f2 are 

inverted.  

6.   Now the two fractions are added using a 2’s complement 

adder.  

7.   If the result sum is a negative number, it has to be  inverted 

and a 1 has to be added to the result.  

8.  The result is then passed through a leading one detector or 

leading zero counter. This is the first step in the     

normalization step.  

9.  Using the results from the leading one detector, the result is 

then shifted left to be normalized. In some cases, 1-bit right 

shift is needed.  

10. The result is then rounded towards nearest even, the 

default rounding mode.  

11. If the carry out from the rounding adder is 1, the result is 

left shifted by one.  

12. Using the results from the leading one detector, the  

exponent is adjusted. The sign is computed and after   

overflow and underflow check, the result is registered. 

A. Micro-Architecture 

     Using  the  above  algorithm,  the  standard floating  point  

adder was designed. The detailed micro-architecture of the 

design is shown in Figure 2. It shows the main hardware  

modules  necessary for floating-point addition. The detailed  

description and functionality of each module will be given 

later in this chapter. 

 

Fig. 2. Micro-architecture of standard floating-point Adder 

     The main hardware modules for a single-precision floating-

point adder are the exponent  difference  module, right shift 

shifter, 2’s complement  adder,  leading  one detector, left shift 

shifter, and the rounding module. The bit-width as shown in 

Figure 3 and  following  figures  is specifically for single-



 

precision  addition  and  will have to be changed for any other 

format. 

B. 2’s Complement Adder 

     2’s complement adder is a simple integer addition process 

which adds or subtracts the pre-normalized significands. 

Figure 3 shows the hardware description of a 2’s complement 

adder.  

 

Fig. 3. Hardware implementation for 2’s complement adder 

 

   The two 27 bit significands enter the module. The signs are 

multiplexed using an XOR gate to determine if the  operation 

is addition or subtraction. In case of subtraction, the sub bit is 

1 otherwise it’s  0. This  signal  is  used  to  invert one of the 

operands before addition in case of subtraction. A 27-bit  

adder with sub bit being  the  carry-in  computes  the  addition. 

The generated carry out signal determines the sign of the result 

and is later on used  to determine the output sign. If the result 

is negative, it has to be inverted and a 1 has to be added to the 

result. 

C. Leading One Detector 

     After the addition, the next step is to normalize the result. 

The first step is to identify the leading or first one in the result. 

This result is used to shift left the adder result by the number 

of zeros in front of the leading one. In order to perform this 

operation, special hardware, called Leading One Detector 

(LOD) or Leading Zero Counter (LZC), has to be 

implemented. There are a number of ways of designing a 

complex and complicated circuit such as LOD. A    

combinational approach is a complex process because each bit 

of the result is dependant on all the inputs. This approach leads 

to large fan-in dependencies and the resulting design is slow 

and complicated. Another approach is using Boolean 

minimization and Karnaugh map, but the design is again 

cumbersome and unorganized. The circuit can also be easily 

described behaviorally using VHDL and the rest can be left to 

Xilinx ISE or any synthesis tool. In our floating-point adder 

design, we used the LOD design  which  identifies  common 

modules  and  imposes  hierarchy  on  the  design.  As 

compared to other options, this design has low fan-in and fan-

out which leads to area and delay efficient design [17] first 

presented by Oklobdzija in 1994. 

D. Oklobdzija’s LOD 

    The first step in the design process is to examine two bits 

case shown in Table 4. The module is named as LOD2. The 

pattern shows the possible combinations. If the left most bit is 

1, the position bit is assigned 0 and the valid bit is assigned 1. 

The position bit is set to 1 if the second bit is 1 and the first bit 

is 0. The valid bit is set to 0 if both the bits are 0. 

 
Table 4: Truth table for LOD2 

Pattern Position Bit Valid Bit 

 

1x 0 1 

01 1 1 

00 x 0 

 

The logic for LOD2 is straightforward and shown in Figure4. 

 

Fig. 4. Hardware implementation for LOD2 

    The two bit case can be easily extended to four bits. Two 

bits are needed to represent the leading-one position. The 

module is named LOD4. The inputs for the LOD4 are the 

position and valid bits from two LOD2’s, respectively. The 

two level implementation of LOD4 is shown in Figure 5. 

 

Fig. 5. Two level implementation of 4 bit LOD 

 

   The truth table examining the LOD4 is shown in Table 5. 

The  second  bit of the LOD4 position bits is  selected using 

the valid bit, V0 of the first LOD2. V0 is inverted to get the 

first position bit. The output valid bit is the OR of the two 

input valid bits. 

 

 

 



 

 
Table 5: Truth table for LOD4 with inputs from two LOD2’s 

Pattern      P0- 

LOD2      

P1- 

LOD2      

V0- 

LOD2      

V1- 

LOD2       

P- 

LOD4        

V- 

LOD4  

 

1xxx 0  1  00 1 

01xx 1  1  01 1 

001x  0 0 1 10 1 

0001  1 0 1 11 1 

0000 0 0 0 0  0 

 

The hardware implementation of the LOD4 is shown in Figure 

6. 

 

Fig. 6. LOD4 logic implementation 

    The implementation of the behavioral LOD is done entirely 

by the Xilinx synthesizer which results in a cumbersome  

design  and  adds routing  delays. On the other hand,  the basic  

module for implementation  described  by Oklobdzija is a  two 

to one  multiplexer, which are implemented using the inbuilt 

function generators of the slices in the CLBs of the spartan 

FPGA. Each connection is defined, thus minimum routing 

delay is expected, and results in better propagation delay and 

area compared to behavioral implementation. The behavioral 

model had a negligibly smaller combinational delay, and 

smaller area, and is therefore used in our implementation. This 

result was unexpected because a behavioural  implementation 

has given a better timing and area numbers compared to the 

VHDL operator  which  uses  inbuilt  shift  registers  in  the 

CLBs. For a single precision floating-point adder the 

maximum amount of left shift needed is 27. The hardware for 

the behavioral left shifter is designed to only accommodate the 

maximum shift amount. As we have no control over the 

hardware implementation in VHDL shifter, it implements 

hardware for shift amounts  greater than 27, thus  resulting  in  

bigger  area  and  delay compared to behavioral shifter. Only 

in case when the carry out from the adder is 1 and the 

operation is addition, the result is shifted right by one position. 

 

 

 

4. POWER OPTIMIZATION TECHNIQUES 

    Platform dependent power optimization techniques are  

implemented  by using  the opportunites which are provided by 

the implementation platform. One of the power optimization 

techniques are sleep mode  operation which is  called as power 

gating. The static power consumption of a CMOS circuit is 

caused by the leakage currents of transistors and pn junctions 

[20]. Especially SRAM based FPGA platform causes the 

circuit consumes a huge amount of static power caused by the 

leakage currents when the circuit  is  off. Power gating method 

prevents the power consumption  by  using sleep mode for the 

states that the circuit is off [17]. There are memory blocks in 

the FPGA’s which cause the   dynamic  power consumption. If 

there are input ports to read or write on these memory blocks, 

these inputs are  allowed to disable for the memory blocks 

which are not used at that time. In  this  way, dynamic power 

consumption of unused memory blocks is prevented. [17]. The 

clock signal in the FPGA has to reach for every single 

sequential block; so it has a  long  routing  line.  These long 

routing lines causes power dissipation by charging and 

discharging  the  nodes  capacitance, which is therefore  also  

referred to as the capacitive power dissipation. It is also 

obvious that clock signal has a high frequency of logic level 

change; this is why its dynamic power consumption is high. So 

there is a way of power optimization by preventing of clock 

routing to the blocks which are unused. This feature is 

available on some of FPGA platforms [17]. 

 

1. Platform Independent Power Optimization Techniques 

A. Glitching 

      Glitches are unwanted transitions of a signal after  an input 

change until the final output value is reached. This behavior is 

due to different arrival times of signals to a gate, called logic 

hazards.  Figure 7  shows  the  circuit  for  the  logic equation  

Q = AB + BC which exhibits a static-1 hazard. When the 

inputs A and C are logic 1 any change on B will cause a 

transition on Q. There are two paths for B to the output Q 

where one path contains an inverter. This causes a slightly 

longer delay, resulting in a  glitch in the output  Q  [20].  More  

complex  circuits  e.g. ripple  carry  adders, amplify  this  

problem. In typical combinational circuits  glitching  accounts  

for between 10%  and  40% of  the dynamic power 

consumption. Hazards and  therefore glitches can be avoided 

at the cost of more circuitry [21]. 

A

B

C

Q

 
               Fig. 7. Glitch caused by hazard.    

 

  There are two types of ways in order to solve this glitching 

problem in the circuit: The first method,  which is widely used 

in our implementation, is to place register blocks between 

large combinational circuits. These register blocks not only 

decreases the logic deepness in the circuit, but also increases 

the clock frequency in the circuit.However, to place these 



 

register  blocks increases the  data  processing  time, This 

method is shown in Figure 8. 

D

CLK

Q D

CLK

Q
COMBINATIONAL 

BLOCK

COMBINATIONAL 

BLOCK

CLK
                           

Fig. 8. Reducing glitches by adding register blocks. 

 

    Second method is to solve glitch problem by  reducing the 

logic deepness of the circuit. This solution is applied to the 

circuit during the HDL code implementation by using some 

coding hints. For example the circuit in Figure 9 can be 

converted into a circuit as Figure 10 by doing some changes in 

the HDL where if, elsif and else blocks are stated. In this way, 

both the logic deepness of the circuit and the amount of the 

glitches are reduced [22]. 
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Fig. 9. The circuit that has unbalanced routing delays. 
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Fig.10. The circuit that has balanced routing delays. 

 

B. Clock gating 

 

     Figure 11 shows a typical implementation of a    

synchronous register with enable. We assume that a register is 

multiple bits wide and consists of one flip-flop per bit. The 

register is disabled when the enable signal is at logic 0. Its 

output is fed back to its input through the multiplexer. When 

the enable signal is at logic 1 the register can load new values 

from data in. In this design each flip-flop of the register 

requires a multiplexer at its data input [20]. 

D Q

CLK

0

1Data in

enable

clock

Data out

                              
Fig. 11. Enable register with multiplexer. 

 

    Furthermore the clock network has to drive each flipflop.  

Clock  gating  provides a way to disable the clock signals for a 

register, therefore eliminating the need for separate 

multiplexers for each input bit. Figure 12 shows such a  

design. The enable signal is usually the output of some  

combinatorial logic and may  contain  glitches. The latch 

prevents glitches from the enable signal to propagate to the 

clock input of the  register. The AND  gate  performs  the  

actual  gating. Clock gating replaces the multiplexers with a 

single clock gating cell and isolates the register clock from the 

global clock. The clock gating cell, containing a latch and an 

AND gate, consumes more power than a single bit    

multiplexer. However, when this technique is applied to 

multiple bit registers it can conserve both, static and dynamic 

power. We observed savings even at registers that were only 8-

bits wide [20]. 

D Q

CLK

D Q

En

Data in

enable

clock

Data out

                       
Fig. 12. Clock gated register. 

 

1) Operand Isolation 

    Operand  Isolation is a method  to  selectively  stop  data 

from entering a block of complex combinatorial logic, causing 

many transitions and therefore dynamic power consumption, 

when the output is discarded by either an unselected 

multiplexer or a currently disabled register.  Figure 13 shows 

an example where changes to the input A consume power even 

when the output A’ is not used. 

1

0

Combinational 

logic

A

B

Select

Q

                         
Fig. 13. Design without operand isolation. 

 

     To prevent this unnecessary power consumption isolation 

logic can be added at the input to the complex combinatorial  

logic. It prevents changes to input A from propagating through 

the combinatorial logic. The isolation logic usually consists of 

either AND or OR gates depending on the specific application. 

The  example  in Figure 14  uses  an  AND  gate  for  operand  

isolation. The combinatorial logic only receives the input A 

when its output A’ is selected by the multiplexer. Otherwise its 

input is 0. In this way, it is prevented unnecessary power 

consumption when control signal Select is not logic1, which 

means the output of combinatorial logic is not used [20]. 
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Fig. 14. Design with operand isolation. 

 

2) Re-timing 

    Retiming for low-power is the process of positioning new or 

moving existing flip-flops so that they separate parts of the 

circuit that cause glitching from parts that have high input  

capacitance. As glitches  do  not  get  propagated through flip-

flops this technique significantly reduces the switching activity 

of the high  input capacitance part of the circuit and hence 

reduces the dynamic power consumption [20]. The critical 

path in Figure 15 is decreased by changing the places of 

registers. The circuit in Figure 16  is  redrawn  in  Figure 11 

after  being  applied  this  retiming method [22]. 
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Fig. 15. Design without re-timing. 
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Fig. 16. Design with re-timing. 

 

 

5. TIMING AND AREA ANALYSIS 

    The standard single precision floating point adder is 

synthesized, placed, and routed for spartan FPGA device using 

Xilinx ISE 12. The minimum clock period reported by the 

synthesis tool after placing and routing was 31 ns. The levels 

of logic reported were 44. That means the maximum  clock 

speed that can be achieved for this implementation is 37 MHz. 

The number of slices reported by the synthesis tool was 370. 

All this information will be used as a base to analyze improved 

floating-point adder algorithms.  

A. Five Stage Pipeline Standard Floating Point Adder 

Implementation 

   In order to decrease clock period, to run the operations at a 

higher clock rate, and to increase speedup by increasing the 

throughput, pipelining is used. Pipelining is achieved by 

distributing the hardware into smaller operations, such that the 

whole operation takes more  clock cycles to complete but new 

inputs can be added with every clock cycle  increasing the 

throughput. Pipelining of floating-point adder has been 

discussed in a number of previous research papers [9,10]. 

Minimum, maximum, and optimum number of pipeline stages 

for a 32 bit floating-point number has been given based on the 

factor of frequency per area (MHz/Slices). According to these 

studies, 5 pipeline stages are the optimum  for  single-precision  

adder implementation. In order to achieve this, all of  the 

hardware modules have to be sub-pipelined within themselves. 

In order to analyze effects of pipelining on floating-point 

adder implementations on FPGAs, we will compare our 

implementation results with Xilinx IP Core by Digital Core 

Design [12]. 

 

B. Micro-Architecture 

   Figure 17 shows the micro-architecture of five stage pipeline 

implementation of the standard floating-point adder     

algorithm implementation. The levels of pipeline chosen are 

purely  based  on comparison with the Xilinx  IP Core and  are 

entirely a design choice according to the design needs. Five is 

a good choice because anymore stages will need sub pipelining 

the modules. The placement of the registers in order to put 

stages is shown as the dotted line in Figure  17. The main 

theory behind  pipelining  is to decrease the clock period thus 

increasing the overall clock speed that the   application can 

run. Adding pipeline stages exploits the D flip-flops in the 

slices already being used for other logic and thus doesn’t 

increase the area significantly. Pipelining also helps increase 

throughput as after the first five clock cycles a result is 

produced after every clock cycle.   



 

 
Fig. 17. Micro-architecture of 5 stage pipeline standard floating-point adder 

 

   In the first stage of the implementation the two operands are 

compared to identify denormalization  and  infinity. Then the 

two exponents are subtracted to obtain the exponent  

difference and identify whether the operands need to be 

swapped  using  the exponent difference sign. In the second 

stage the right sifter is used to pre normalize the smaller 

mantissa. In the third stage addition is done along with the 

leading one detection. In the fourth stage left shifter  is used to 

post normalize the result. In the last stage the  exponent out is 

calculated and rounding  is  done. The results are then 

compared to set overflow or underflow flags. 

 

C. Timing and Area Comparison with Xilinx  Intellectual 

Property   

  The five stage standard single precision floating  point  adder 

is synthesized, placed, and routed for spartan FPGA device 

using Xilinx ISE 12. The minimum clock period reported  by  

the  synthesis tool after placing and routing  was  8ns.  That  

means the maximum clock speed that can be achieved for this 

implementation is 126 MHz. The  number of slices reported by 

the synthesis tool was 394. The maximum delay was shown by 

third stage where the addition and leading one detection 

occurs. Inducing registers to implement stages in the design 

reduces the routing delays significantly compared to one stage  

pipeline in the previous  section.  The five stage pipelined 

standard floating-point adder implementation clock speed is 

6.4% better than that reported by Xilinx IP. The area reported 

for our implementation is 23% better than the Xilinx IP. Due 

to better slice packing the area occupied by five stage 

pipelined version of standard adder implementation takes  

around  27% (147 slices) less than its non pipelined version. 

The IP doesn’t give the algorithm or the internal module       

implementation or stage placement thus it is hard to compare 

in detail the reasons behind these numbers. This study is done 

to mainly to give designers a comparison between our 

implementation and the IP available for sale.  The result shown 

in figure 18. 

6.  CONCLUSIONS 

    Floating-point unit is an integral part of any modern  

microprocessor. With advancement in FPGA architecture, new 

devices are big and fast enough to fit and run modern 

microprocessors interfaced on design boards for different 

applications. Floating-point  units  are  available in forms  of  

intellectual  property  for  FPGAs  to be bought and used by 

customers. However, the HDL for the design is not available 

to be modified by the customers according to their design 

needs. Floating-point adder is the most complex component of 

the floating-point unit. It consists of many complex sub 

components and their   implementations have a major effect on 

latency and area of the overall design. Over the past two 

decades, a lot of research has been done by the VLSI 

community to improve  overall latency for the floating-point 

adder while keeping  the  area reasonable. Many algorithms 

have been developed over time. In order to reduce confusions 

among  programmers and vendors, IEEE introduced  the  IEEE 

754 standard  in 1985 which standardizes floating-point binary 

arithmetic for both software and hardware. There are many 

floating-point adder implementations available for FPGAs but 

to the best  of  our  knowledge,  no work  has been done to 

design and compare  different implementations for each sub 

component used in the floating-point addition for a FPGA 

device. The main objective of our work was to  implement 

these components and obtain best overall latency for the  three  

different  algorithms and provide HDL and discuss solutions to 

improve custom designs. Standard  algorithm consists of the 

basic operation which consists of right shifter, 2’s complement 

adder, leading one detector, and left shifter. Different 

implementations for all these  various  components were done 

using  VHDL  and  then  synthesized  for Xilinx spartan FPGA 

device to be  compared for combinational delay and area. The 

objective was to reduce the overall latency; therefore each sub  

component is selected accordingly. Standard algorithm is also 

considered as naive algorithm for floating-point adder and is 

considered to be area efficient but has larger delays in levels of 

logic and overall latency. For a Xilinx spartan FPGA device 

our implementation of the standard algorithm occupied 370 

slices and had an overall delay of 31 ns. The standard 

algorithm was also pipelined into five stages to run at 100 

MHz which took an area of 324 slices.  The pipelined version 

of LOD adder was a better choice when compared to Xilinx IP 

Core [12] running at 22% better clock speed and thus giving a 

better throughput. The main objective of this research was to 

develop a design resource for designers to implement floating-

point adder onto FPGA device according to their design needs 

such as clock speed, throughput and area. This kind of work 

has not been done before, to the best of our knowledge, and we 

believe it would be a great help in custom implementation and 

design of floating-point adders on FPGAs.   
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       Fig. 18.The Result Of Floating Point Adder. 
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