

Low Power VLSI Architecture for FP Adder With
VHDL in DSP Application

Ali Farmani
Lorestan University, Electrical And Computer Engineering Department

Ali_farmani88@ms.tabrizu.ac.ir

Abstract: In this paper, we present the design of a low

power floating-point adder for DSP and FPGA application.

We provide synthesis results shown the estimated power

consumption for our design when it is pipelined and glitching

and re-timing and clock gating. Our work is an important

design supply for development of this unit design on DSP. All

components within the FP adder and known algorithm are

researched and design to provide elasticity to designers as an

alternative to brilliant property where they have no control

over the design. Each of the operation is researched for

different design and then result onto a Altera FPGA device to

be chosen for power efficient. Our design of the basic

algorithm occupied 370 slices and had an overall delay of 31

ns. The basic algorithm was pipelined into five stages to run at

100 MHz which took an area of 324 slices and power is

30mw1.

KEYWORDS: Digital signal processing, Floating Point Adder,

FPGA, VHDL, Pipeline, Glitching, Micro-Architecture, Re-timing,

Clock gating, Operand Isolation.

1. INTRODUCTION

 High performance floating point adders are essential

building blocks of microprocessors and floating point DSP

data paths. Since the hardware implementation of floating

point addition (FP addition) involves the realization of a

multitude of distinct data processing sub-units that endure a

series of power consuming transitions during the course of

their operations [1–4], the power consumption of floating point

adders are, in general quite significant in comparison to that of

their integer counterparts.Owing to the presence of a relatively

high traffic of floating point additions in microprocessors[5–7]

and DSPs. In digital CMOS implementations, the power

consumption and speed performance of functional units are, to

a large extent, susceptible to algorithmic design decisions [8].

These decision sinfluence the switching activities, fan outs,

layout complexity, logic depths, operand scalability and

pipeline ability of functional units. Among the above,

switching activities, fan outs and layout complexity are

directly related to the power consumption. The higher the

values of these parameters, the higher the power consumption.

Architectural design for low power operation targets the

minimization of these parameters. Traditionally, the

architecture of floating point adders had been centered around

the sequential machine philosophy. With an ever escalating

demand for high performance floating point units, newer

design approaches are emerging[5–7,9–11]. With new designs,

throughput acceleration is achieved through operational

parallelism. In [5,6] and [7] Oberman etal. proposed a novel

architecture that incorporates concurrent, speculative

computation of three possible results of an FP addition. These

results are typified by the time complexities of their

operations: the hardware realization of ceratin cases of floating

point addition can be simplified so that the execution time of

such operations are reduced. With this, the variable latency

architecture reported in [5, 6] and [7] produces results within

1, 2 or 3 cycles, by virtue of which the average latency of FP

additions is reduced. The fusion of multiply and accumulate

operations in floating point multiply-accumulate (MAC)

units [9], and the concurrent evaluation of leading zeros with

significand addition (leading zero anticipation) [9–11] are

other notable examples that exploit parallelism for latency

reduction. The operation of rounding is an integral part of

floating point addition. While MAC fusion and leading zero

anticipatory logic provide throughput acceleration, speculative

computing for rounding [12] also enhances the throughput of

floating point units. Though the concept of operational

parallelism can be put to advantageous use as far as throughput

acceleration is concerned, and the trading of speed

performance for power reduction is also not infeasible, this

approach, however cannot guarantee power reduction in

performance critical applications. The main objective of their

implementation was to achieve IEEE standard accuracy with

reasonable performance parameters. This is claimed to be

the first IEEE single precision floating-point adder

implementation on a FPGA, before this, implementation with

only 18-bit word length was present [2]. Floating-point

addition is the most frequent floating-point operation and

accounts for almost half of the scientific operation. Therefore,

it is a fundamental component of math coprocessor, DSP

processors, embedded arithmetic processors, and data

processing units. These components demand high numerical

stability and accuracy and hence are floating-point based.

Floating-point addition is a costly operation in terms of

hardware and timing as it needs different types of building

blocks with variable latency. A lot of work has been done to

improve the overall latency of floating-point adders. Various

algorithms and design approaches have been developed by the

Very Large Scale Integrated(VLSI) circuit community

[3-4,9-12] over the span of last two decades. Binary floating-

point arithmetic is usually sufficient forscientific and statistics

applications. However, it is not sufficient for many commercial

applications and database systems, in which operations often

need to mirror manual calculations. Therefore, these

applications often use software to perform decimal floating -

point arithmetic operations. Although this approach eliminates

errors due to converting between binary and decimal numbers

and provides decimal rounding to mirror manual calculations,

it results in long latencies for numerically intensive

commercial applications. Because of the growing importance

of decimal floating-point arithmetic, specifications for it

have been added to the draft revision of the IEEE-754

Standard for Floating-Point Arithmetic (IEEE P754)[5]. The

most important functionality of FPGA devices is their ability

to reconfigure when needed according to the design need. In

2003, J.Liang, R.Tessier and O.Mencer[6] developed a tool

which gives the user the option to create vast collection of

floating-point units with different throughput, latency, and area

characteristics. One of the most recent works published

related to our work is published by G.Govindu, L.Zhuo,

S.Choi, and V.Prasanna[7] on the analysis of high-

performance floating-point arithmetic on FPGA.

2. ALGORITHM OF FLOATING POINT ADDER

 In this section we express design and implementation

algorithm of floating point adder with single precision .

A. Fixed Point and Floating Point Representations

 Every real number has an integer part and a fraction part; a

radix point is used to differentiate between them. The number

of binary digits assigned to the integer part may be different to

the number of digits assigned to the fractional part. A generic

binary representation with decimal conversion is shown in

table 1.

Table 1: Binary representation and conversion to decimal of a numeric.

Number Integer part Binary

point

Fraction part

Binary 32
22

12
02

. 12
22

32

decimal 8 4 2 1 .

2

1

 4

1

 8

1

B. Fixed-Point Representation

 A representation, in which a real number is represented by

an approximation to some fixed number of places after the

radix or decimal point, is called a fixed-point representation.

Usually the radix point is placed next to the least significant bit

thus only representing the integer part. The main advantage

of this kind of representation is that integer arithmetic can

be applied to them and they can be stored using small values.

This helps making the operations faster and area efficient. The

main disadvantage is that a fixed-point number has limited

or no flexibility, i.e., number of significant bits to the right of

the decimal point. Some of the other disadvantages are that

the arithmetic operations based on this representation can go

into overflow and underflow often. The fixed-point number

also has a limited integer range and it is hard to represent very

small and big number in the same representation. These are

some of the reasons why floating-point representation and

arithmetic was evolved to take care of these disadvantages.

C. 2’s Complement Representation

 In order to represent both positive and negative fixed-point

numbers, 2’s complement representation is used. Positive 2’s

complement numbers are represented as simple binary.

Negative number is represented in a way that when it is added

to a positive number of same magnitudes the answer is zero.

In 2’s complement representation, the most significant bit is

called the sign bit. If the sign bit is 0, the number is non-

negative ,i.e., 0 or greater. If the sign bit is 1, the number is

negative or less than 0. In order to calculate a 2’s complement

or a negative of a certain binary integer number, first 1’s

complement, i.e., bit inversion is done and then a 1 is added to

the result.

D. Floating-Point Representation

 In general, a floating-point number will be represented
Edddd  , where dddd is called the significand and

has p digits also called the precision of the number, and  is

the base being 10 for decimal, 2 for binary or 16 for

hexadecimal. If  = 10 and p = 3, then the number 0.1 is

represented as 11000.1  . If  = 2 and p = 24, then the

decimal number 0.1 cannot be represented exactly, but is

approximately
-42 0110110011001101.10011001  . This

shows a number which is exactly represented in one format

lies between two floating-point numbers in another format.

Thus the most important factor of floating-point representation

is the precision or number of bits used to represent the

significands. Other important parameters are maxE and minE ,

the largest and the smallest encoded exponents for a certain

representation, giving the range of a number.

E. IEEE Floating Point Representation

 The Institute of Electrical and Electronics Engineering

(IEEE) issued 754 standard for binary floating-point arithmetic

in 1985 [15]. This standardization was needed to eliminate

computing industry’s arithmetic vagaries. Due to different

definitions used by different vendors, machine specific

constraints were imposed on programmers and clients. The

standard specifies basic and extended floating-point number

formats, arithmetic operations, conversions between various

number formats, and floating-point exceptions. This section

goes over the aspects of the standard used in implementing and

evaluating various floating-point adder algorithms.

F. Basic Format

 There are two basic formats described in IEEE 754 format,

double-precision using 64-bits and single-precision using 32-

bits. Table 2 shows the comparison between the important

aspects of the two representations.

Table 2: Single and double precision format summary

Format Precision Emax Emin Exponent

width

Format

width

Single

24 +127 -126 8 32

Double

53 +1023 -1022 11 64

 The single-precision floating-point number is calculated

as 127)-(Es 2 × 1.F × (-1) The sign bit is either 0 for non-negative

number or 1 for negative numbers. The exponent field

represents both positive and negative exponents. To do this, a

bias is added to the actual exponent. For IEEE single-precision

format, this value is 127, for example, a stored value of 200

indicates an exponent of (200-127), or 73. The mantissa or

significand is composed of an implicit leading bit and the

fraction bits, and represents the precision bits of the number.

Exponent values (hexadecimal) of 0xFF and 0x00 are reserved

to encode special numbers such as zero, denormalized

numbers, infinity, and NaNs. The mapping from an encoding

of a single-precision floating-point number to the number’s

value is summarized in Table 3.

Table 3: IEEE 754 single precision floating-point encoding

Sign Exponent Fraction Value Description

S 0Xff 0x00000000  s)1(

Infinity

S 0xFF F≠0 NaN Not a Number

S 0x00 0x00000000 0 Zero

S 0x00 F≠0 2 × 0.F × (-1) 126)-(Es

DenormalNum

S 0x00< E

< 0xFF

F 2 × 1.F × (-1) 127)-(Es

NormalNum

G. Normalized numbers

 A floating-point number is said to be normalized if the

exponent field contains the real exponent plus the bias other

than 0xFF and 0x00. For all the normalized numbers, the first

bit just left to the decimal point is considered to be 1 and not

encoded in the floating-point representation and thus also

called the implicit or the hidden bit. Therefore the single-

precision representation only encodes the lower 23 bits.

H. Denormalized numbers

 A floating-point number is considered to be denormalized

if the exponent field is 0x00 and the fraction field doesn’t

contain all 0’s. The implicit or the hidden bit is always set to 0.

Denormalized numbers fill in the gap between zero and the

lowest normalized number.

I. Infinity

 In single-precision representation, infinity is represented by

exponent field of 0xFF and the whole fraction field of 0’s.

J. Not a Number (NaN)

 In single-precision representation, NaN is represented by

exponent field of 0xFF and the fraction field that doesn’t

include all 0’s.

K. Zero

 In single-precision representation, zero is represented by

exponent field of 0x00 and the whole fraction field of 0’s. The

sign bit represents -0 and +0, respectively.

L. Rounding Modes

 Rounding takes a number regarded as infinitely precise

and, if necessary, modifies it to fit in the destination’s format

while signaling the inexact exception. Thus the rounding mode

affects the results of most arithmetic operations, and the

thresholds for overflow and underflow exceptions. In IEEE

754 floating point representation, there are four rounding

modes defined: round towards nearest even (REN), round

towards -∞ (RP), round towards +∞ (RM), and round towards

0 (RZ). The default rounding mode is REN and is mostly

used in all the arithmetic implementations in software and

hardware. In order to evaluate different adder algorithms, we

are also interested in only the default rounding mode i.e. REN.

In this mode, the representable value nearest to the infinitely

precise result is chosen. If the two nearest representable values

are equally near, the one with its least significant bit equal to

zero is chosen.

M. Exceptions

 The IEEE 754 defines five types of exceptions: overflow,

underflow, invalid operation, inexact result, and division-by-

zero. Exceptions are signaled by setting a flag or setting a trap.

In evaluating hardware implementations of different floating-

point adder algorithms, we only implemented overflow and

underflow flags in our designs as they are the most frequent

exceptions that occur during addition.

N. Standard Floating Point Addition Algorithm

 This section will review the standard floating point

algorithm architecture, and the hardware modules designed as

part of this algorithm, including their function, structure, and

use. The standard architecture is the baseline algorithm for

floating-point addition in any kind of hardware and software

design [16].

3. ALGORITHM

 Let s1; e1; f1 and s2; e2; f2 be the signs, exponents, and

significands of two input floating-point operands, N1 and

N2, respectively. Given these two numbers, Figure 1 shows the

flowchart of the standard floating-point adder algorithm. A

description of the algorithm is as follows.

Fig. 1. Flow chart for standard floating-point adder

1. The two operands, N1 and N2 are read in and compared

for denormalization and infinity. If numbers are

denormalized, set the implicit bit to 0 otherwise it is set to 1.

At this point, the fraction part is extended to 24 bits.

2. The two exponents, e1 and e2 are compared using 8-bit

subtraction. If e1 is less than e2, N1 and N2 are swapped i.e.

previous f2 will now be referred to as f1 and vice versa.

3. The smaller fraction, f2 is shifted right by the absolute

difference result of the two exponents’ subtraction. Now both

the numbers have the same exponent.

4. The two signs are used to see whether the operation is a

subtraction or an addition.

5. If the operation is a subtraction, the bits of the f2 are

inverted.

6. Now the two fractions are added using a 2’s complement

adder.

7. If the result sum is a negative number, it has to be inverted

and a 1 has to be added to the result.

8. The result is then passed through a leading one detector or

leading zero counter. This is the first step in the

normalization step.

9. Using the results from the leading one detector, the result is

then shifted left to be normalized. In some cases, 1-bit right

shift is needed.

10. The result is then rounded towards nearest even, the

default rounding mode.

11. If the carry out from the rounding adder is 1, the result is

left shifted by one.

12. Using the results from the leading one detector, the

exponent is adjusted. The sign is computed and after

overflow and underflow check, the result is registered.

A. Micro-Architecture

 Using the above algorithm, the standard floating point

adder was designed. The detailed micro-architecture of the

design is shown in Figure 2. It shows the main hardware

modules necessary for floating-point addition. The detailed

description and functionality of each module will be given

later in this chapter.

Fig. 2. Micro-architecture of standard floating-point Adder

 The main hardware modules for a single-precision floating-

point adder are the exponent difference module, right shift

shifter, 2’s complement adder, leading one detector, left shift

shifter, and the rounding module. The bit-width as shown in

Figure 3 and following figures is specifically for single-

precision addition and will have to be changed for any other

format.

B. 2’s Complement Adder

 2’s complement adder is a simple integer addition process

which adds or subtracts the pre-normalized significands.

Figure 3 shows the hardware description of a 2’s complement

adder.

Fig. 3. Hardware implementation for 2’s complement adder

 The two 27 bit significands enter the module. The signs are

multiplexed using an XOR gate to determine if the operation

is addition or subtraction. In case of subtraction, the sub bit is

1 otherwise it’s 0. This signal is used to invert one of the

operands before addition in case of subtraction. A 27-bit

adder with sub bit being the carry-in computes the addition.

The generated carry out signal determines the sign of the result

and is later on used to determine the output sign. If the result

is negative, it has to be inverted and a 1 has to be added to the

result.

C. Leading One Detector

 After the addition, the next step is to normalize the result.

The first step is to identify the leading or first one in the result.

This result is used to shift left the adder result by the number

of zeros in front of the leading one. In order to perform this

operation, special hardware, called Leading One Detector

(LOD) or Leading Zero Counter (LZC), has to be

implemented. There are a number of ways of designing a

complex and complicated circuit such as LOD. A

combinational approach is a complex process because each bit

of the result is dependant on all the inputs. This approach leads

to large fan-in dependencies and the resulting design is slow

and complicated. Another approach is using Boolean

minimization and Karnaugh map, but the design is again

cumbersome and unorganized. The circuit can also be easily

described behaviorally using VHDL and the rest can be left to

Xilinx ISE or any synthesis tool. In our floating-point adder

design, we used the LOD design which identifies common

modules and imposes hierarchy on the design. As

compared to other options, this design has low fan-in and fan-

out which leads to area and delay efficient design [17] first

presented by Oklobdzija in 1994.

D. Oklobdzija’s LOD

 The first step in the design process is to examine two bits

case shown in Table 4. The module is named as LOD2. The

pattern shows the possible combinations. If the left most bit is

1, the position bit is assigned 0 and the valid bit is assigned 1.

The position bit is set to 1 if the second bit is 1 and the first bit

is 0. The valid bit is set to 0 if both the bits are 0.

Table 4: Truth table for LOD2

Pattern Position Bit Valid Bit

1x 0 1

01 1 1

00 x 0

The logic for LOD2 is straightforward and shown in Figure4.

Fig. 4. Hardware implementation for LOD2

 The two bit case can be easily extended to four bits. Two

bits are needed to represent the leading-one position. The

module is named LOD4. The inputs for the LOD4 are the

position and valid bits from two LOD2’s, respectively. The

two level implementation of LOD4 is shown in Figure 5.

Fig. 5. Two level implementation of 4 bit LOD

 The truth table examining the LOD4 is shown in Table 5.

The second bit of the LOD4 position bits is selected using

the valid bit, V0 of the first LOD2. V0 is inverted to get the

first position bit. The output valid bit is the OR of the two

input valid bits.

Table 5: Truth table for LOD4 with inputs from two LOD2’s

Pattern P0-

LOD2

P1-

LOD2

V0-

LOD2

V1-

LOD2

P-

LOD4

V-

LOD4

1xxx 0 1 00 1

01xx 1 1 01 1

001x 0 0 1 10 1

0001 1 0 1 11 1

0000 0 0 0 0 0

The hardware implementation of the LOD4 is shown in Figure

6.

Fig. 6. LOD4 logic implementation

 The implementation of the behavioral LOD is done entirely

by the Xilinx synthesizer which results in a cumbersome

design and adds routing delays. On the other hand, the basic

module for implementation described by Oklobdzija is a two

to one multiplexer, which are implemented using the inbuilt

function generators of the slices in the CLBs of the spartan

FPGA. Each connection is defined, thus minimum routing

delay is expected, and results in better propagation delay and

area compared to behavioral implementation. The behavioral

model had a negligibly smaller combinational delay, and

smaller area, and is therefore used in our implementation. This

result was unexpected because a behavioural implementation

has given a better timing and area numbers compared to the

VHDL operator which uses inbuilt shift registers in the

CLBs. For a single precision floating-point adder the

maximum amount of left shift needed is 27. The hardware for

the behavioral left shifter is designed to only accommodate the

maximum shift amount. As we have no control over the

hardware implementation in VHDL shifter, it implements

hardware for shift amounts greater than 27, thus resulting in

bigger area and delay compared to behavioral shifter. Only

in case when the carry out from the adder is 1 and the

operation is addition, the result is shifted right by one position.

4. POWER OPTIMIZATION TECHNIQUES

 Platform dependent power optimization techniques are

implemented by using the opportunites which are provided by

the implementation platform. One of the power optimization

techniques are sleep mode operation which is called as power

gating. The static power consumption of a CMOS circuit is

caused by the leakage currents of transistors and pn junctions

[20]. Especially SRAM based FPGA platform causes the

circuit consumes a huge amount of static power caused by the

leakage currents when the circuit is off. Power gating method

prevents the power consumption by using sleep mode for the

states that the circuit is off [17]. There are memory blocks in

the FPGA’s which cause the dynamic power consumption. If

there are input ports to read or write on these memory blocks,

these inputs are allowed to disable for the memory blocks

which are not used at that time. In this way, dynamic power

consumption of unused memory blocks is prevented. [17]. The

clock signal in the FPGA has to reach for every single

sequential block; so it has a long routing line. These long

routing lines causes power dissipation by charging and

discharging the nodes capacitance, which is therefore also

referred to as the capacitive power dissipation. It is also

obvious that clock signal has a high frequency of logic level

change; this is why its dynamic power consumption is high. So

there is a way of power optimization by preventing of clock

routing to the blocks which are unused. This feature is

available on some of FPGA platforms [17].

1. Platform Independent Power Optimization Techniques

A. Glitching

 Glitches are unwanted transitions of a signal after an input

change until the final output value is reached. This behavior is

due to different arrival times of signals to a gate, called logic

hazards. Figure 7 shows the circuit for the logic equation

Q = AB + BC which exhibits a static-1 hazard. When the

inputs A and C are logic 1 any change on B will cause a

transition on Q. There are two paths for B to the output Q

where one path contains an inverter. This causes a slightly

longer delay, resulting in a glitch in the output Q [20]. More

complex circuits e.g. ripple carry adders, amplify this

problem. In typical combinational circuits glitching accounts

for between 10% and 40% of the dynamic power

consumption. Hazards and therefore glitches can be avoided

at the cost of more circuitry [21].

A

B

C

Q

 Fig. 7. Glitch caused by hazard.

 There are two types of ways in order to solve this glitching

problem in the circuit: The first method, which is widely used

in our implementation, is to place register blocks between

large combinational circuits. These register blocks not only

decreases the logic deepness in the circuit, but also increases

the clock frequency in the circuit.However, to place these

register blocks increases the data processing time, This

method is shown in Figure 8.

D

CLK

Q D

CLK

Q
COMBINATIONAL

BLOCK

COMBINATIONAL

BLOCK

CLK

Fig. 8. Reducing glitches by adding register blocks.

 Second method is to solve glitch problem by reducing the

logic deepness of the circuit. This solution is applied to the

circuit during the HDL code implementation by using some

coding hints. For example the circuit in Figure 9 can be

converted into a circuit as Figure 10 by doing some changes in

the HDL where if, elsif and else blocks are stated. In this way,

both the logic deepness of the circuit and the amount of the

glitches are reduced [22].

Logic G

Logic G

Logic G

A

B

C

D
X

Fig. 9. The circuit that has unbalanced routing delays.

Logic G

Logic G

Logic G

A

B

C

D

X

Fig.10. The circuit that has balanced routing delays.

B. Clock gating

 Figure 11 shows a typical implementation of a

synchronous register with enable. We assume that a register is

multiple bits wide and consists of one flip-flop per bit. The

register is disabled when the enable signal is at logic 0. Its

output is fed back to its input through the multiplexer. When

the enable signal is at logic 1 the register can load new values

from data in. In this design each flip-flop of the register

requires a multiplexer at its data input [20].

D Q

CLK

0

1Data in

enable

clock

Data out

Fig. 11. Enable register with multiplexer.

 Furthermore the clock network has to drive each flipflop.

Clock gating provides a way to disable the clock signals for a

register, therefore eliminating the need for separate

multiplexers for each input bit. Figure 12 shows such a

design. The enable signal is usually the output of some

combinatorial logic and may contain glitches. The latch

prevents glitches from the enable signal to propagate to the

clock input of the register. The AND gate performs the

actual gating. Clock gating replaces the multiplexers with a

single clock gating cell and isolates the register clock from the

global clock. The clock gating cell, containing a latch and an

AND gate, consumes more power than a single bit

multiplexer. However, when this technique is applied to

multiple bit registers it can conserve both, static and dynamic

power. We observed savings even at registers that were only 8-

bits wide [20].

D Q

CLK

D Q

En

Data in

enable

clock

Data out

Fig. 12. Clock gated register.

1) Operand Isolation

 Operand Isolation is a method to selectively stop data

from entering a block of complex combinatorial logic, causing

many transitions and therefore dynamic power consumption,

when the output is discarded by either an unselected

multiplexer or a currently disabled register. Figure 13 shows

an example where changes to the input A consume power even

when the output A’ is not used.

1

0

Combinational

logic

A

B

Select

Q

Fig. 13. Design without operand isolation.

 To prevent this unnecessary power consumption isolation

logic can be added at the input to the complex combinatorial

logic. It prevents changes to input A from propagating through

the combinatorial logic. The isolation logic usually consists of

either AND or OR gates depending on the specific application.

The example in Figure 14 uses an AND gate for operand

isolation. The combinatorial logic only receives the input A

when its output A’ is selected by the multiplexer. Otherwise its

input is 0. In this way, it is prevented unnecessary power

consumption when control signal Select is not logic1, which

means the output of combinatorial logic is not used [20].

1

0

Combinational

logic

A

B

SELECT

Q

Fig. 14. Design with operand isolation.

2) Re-timing

 Retiming for low-power is the process of positioning new or

moving existing flip-flops so that they separate parts of the

circuit that cause glitching from parts that have high input

capacitance. As glitches do not get propagated through flip-

flops this technique significantly reduces the switching activity

of the high input capacitance part of the circuit and hence

reduces the dynamic power consumption [20]. The critical

path in Figure 15 is decreased by changing the places of

registers. The circuit in Figure 16 is redrawn in Figure 11

after being applied this retiming method [22].

A D Q

CLK

D Q

CLK

D Q

CLK

clock

clock

B

C

D

clock

Fig. 15. Design without re-timing.

A

D Q

CLK

B

C

D

D Q

CLK

D Q

CLK

D Q

CLK

clock

clock

clock

Fig. 16. Design with re-timing.

5. TIMING AND AREA ANALYSIS

 The standard single precision floating point adder is

synthesized, placed, and routed for spartan FPGA device using

Xilinx ISE 12. The minimum clock period reported by the

synthesis tool after placing and routing was 31 ns. The levels

of logic reported were 44. That means the maximum clock

speed that can be achieved for this implementation is 37 MHz.

The number of slices reported by the synthesis tool was 370.

All this information will be used as a base to analyze improved

floating-point adder algorithms.

A. Five Stage Pipeline Standard Floating Point Adder

Implementation

 In order to decrease clock period, to run the operations at a

higher clock rate, and to increase speedup by increasing the

throughput, pipelining is used. Pipelining is achieved by

distributing the hardware into smaller operations, such that the

whole operation takes more clock cycles to complete but new

inputs can be added with every clock cycle increasing the

throughput. Pipelining of floating-point adder has been

discussed in a number of previous research papers [9,10].

Minimum, maximum, and optimum number of pipeline stages

for a 32 bit floating-point number has been given based on the

factor of frequency per area (MHz/Slices). According to these

studies, 5 pipeline stages are the optimum for single-precision

adder implementation. In order to achieve this, all of the

hardware modules have to be sub-pipelined within themselves.

In order to analyze effects of pipelining on floating-point

adder implementations on FPGAs, we will compare our

implementation results with Xilinx IP Core by Digital Core

Design [12].

B. Micro-Architecture

 Figure 17 shows the micro-architecture of five stage pipeline

implementation of the standard floating-point adder

algorithm implementation. The levels of pipeline chosen are

purely based on comparison with the Xilinx IP Core and are

entirely a design choice according to the design needs. Five is

a good choice because anymore stages will need sub pipelining

the modules. The placement of the registers in order to put

stages is shown as the dotted line in Figure 17. The main

theory behind pipelining is to decrease the clock period thus

increasing the overall clock speed that the application can

run. Adding pipeline stages exploits the D flip-flops in the

slices already being used for other logic and thus doesn’t

increase the area significantly. Pipelining also helps increase

throughput as after the first five clock cycles a result is

produced after every clock cycle.

Fig. 17. Micro-architecture of 5 stage pipeline standard floating-point adder

 In the first stage of the implementation the two operands are

compared to identify denormalization and infinity. Then the

two exponents are subtracted to obtain the exponent

difference and identify whether the operands need to be

swapped using the exponent difference sign. In the second

stage the right sifter is used to pre normalize the smaller

mantissa. In the third stage addition is done along with the

leading one detection. In the fourth stage left shifter is used to

post normalize the result. In the last stage the exponent out is

calculated and rounding is done. The results are then

compared to set overflow or underflow flags.

C. Timing and Area Comparison with Xilinx Intellectual

Property

 The five stage standard single precision floating point adder

is synthesized, placed, and routed for spartan FPGA device

using Xilinx ISE 12. The minimum clock period reported by

the synthesis tool after placing and routing was 8ns. That

means the maximum clock speed that can be achieved for this

implementation is 126 MHz. The number of slices reported by

the synthesis tool was 394. The maximum delay was shown by

third stage where the addition and leading one detection

occurs. Inducing registers to implement stages in the design

reduces the routing delays significantly compared to one stage

pipeline in the previous section. The five stage pipelined

standard floating-point adder implementation clock speed is

6.4% better than that reported by Xilinx IP. The area reported

for our implementation is 23% better than the Xilinx IP. Due

to better slice packing the area occupied by five stage

pipelined version of standard adder implementation takes

around 27% (147 slices) less than its non pipelined version.

The IP doesn’t give the algorithm or the internal module

implementation or stage placement thus it is hard to compare

in detail the reasons behind these numbers. This study is done

to mainly to give designers a comparison between our

implementation and the IP available for sale. The result shown

in figure 18.

6. CONCLUSIONS

 Floating-point unit is an integral part of any modern

microprocessor. With advancement in FPGA architecture, new

devices are big and fast enough to fit and run modern

microprocessors interfaced on design boards for different

applications. Floating-point units are available in forms of

intellectual property for FPGAs to be bought and used by

customers. However, the HDL for the design is not available

to be modified by the customers according to their design

needs. Floating-point adder is the most complex component of

the floating-point unit. It consists of many complex sub

components and their implementations have a major effect on

latency and area of the overall design. Over the past two

decades, a lot of research has been done by the VLSI

community to improve overall latency for the floating-point

adder while keeping the area reasonable. Many algorithms

have been developed over time. In order to reduce confusions

among programmers and vendors, IEEE introduced the IEEE

754 standard in 1985 which standardizes floating-point binary

arithmetic for both software and hardware. There are many

floating-point adder implementations available for FPGAs but

to the best of our knowledge, no work has been done to

design and compare different implementations for each sub

component used in the floating-point addition for a FPGA

device. The main objective of our work was to implement

these components and obtain best overall latency for the three

different algorithms and provide HDL and discuss solutions to

improve custom designs. Standard algorithm consists of the

basic operation which consists of right shifter, 2’s complement

adder, leading one detector, and left shifter. Different

implementations for all these various components were done

using VHDL and then synthesized for Xilinx spartan FPGA

device to be compared for combinational delay and area. The

objective was to reduce the overall latency; therefore each sub

component is selected accordingly. Standard algorithm is also

considered as naive algorithm for floating-point adder and is

considered to be area efficient but has larger delays in levels of

logic and overall latency. For a Xilinx spartan FPGA device

our implementation of the standard algorithm occupied 370

slices and had an overall delay of 31 ns. The standard

algorithm was also pipelined into five stages to run at 100

MHz which took an area of 324 slices. The pipelined version

of LOD adder was a better choice when compared to Xilinx IP

Core [12] running at 22% better clock speed and thus giving a

better throughput. The main objective of this research was to

develop a design resource for designers to implement floating-

point adder onto FPGA device according to their design needs

such as clock speed, throughput and area. This kind of work

has not been done before, to the best of our knowledge, and we

believe it would be a great help in custom implementation and

design of floating-point adders on FPGAs.

.

 ACKNOWLEDGMENT

 Special thanks to Professor h.b.balazadeh, Professor in the

Department of Computer Science Engineering, university of

tabriz, my advisor for this work, for allowing me to choose

such an interesting area of VLSI Design. I am also very

thankful to all seniors of VLSI lab in the Electronics and

Communications Engineering Department, and thanks to

Professor kozeh kanani Dean of department electrical and

computer for guide me in this section.

REFERENCES

[1] M.Farmland, “On the Design of High Performance Digital Arithmetic

Units, “ PhD thesis, Stanford University, Department of Electrical

Engineering, August 1981.

[2] P.M.Seidel, G.Even, “Delay-Optimization Implementation of IEEE

Floating-Point Addition,” IEEE Transactions on computers, pp. 97-113,

February 2004, vol. 53, no. 2

[3] J.D.Bruguera and T.Lang, “Leading-One Prediction with Concurrent

Position Correction,” IEEE Transactions on Computers, pp. 1083–1097,

1999, vol. 48, no.10.

[4] S. F.Oberman, H.Al-Twaijry and M. J.Flynn,“The SNAP Project:

Design of Floating-Point Arithmetic Units” Proc. 13th IEEE Symp. on

Computer Arithmetic, pp. 156-165, 1997.

[5] Xilinx, http://www.xlinix/com.

[6] L.Louca, T.A.Cook, W.H.Johnson, “Implementation of IEEE Single

Precision Floating Point Addition and Multiplication on FPGAs,”

FPGAs for Custom Computing, 1996.

[7] W.B. Ligon, S.McMillan, G.Monn, F.Stivers, and K.D.Underwood, “A

Re-evaluation of the Practicality of Floating-point Operations on

FPGAs,” IEEE Symp. On Field-Programmable Custom Computing

Machines, pp. 206–215, April 1998.

[8] E.Roesler, B. E. Nelson, “Novel Optimizations for Hardware Floating-

Point Units in a Modern FPGA Architecture,” Field-Programmable

Logic and Applications, pp. 637-646, September 2002.

[9] J.Liang, R.Tessier and O.Mencer, “Floating Point Unit Generation and

Evaluation for FPGAs,” IEEE Symp. on Field-Programmable Custom

Computing Machines, pp. 185-194, April 2003.

[10] G.Govindu, L.Zhuo, S.Choi, and V.Prasanna, “Analysis of High-

Performance Floating-Point Arithmetic on FPGAs,” International

Parallel and Distributed Processing Symp., pp. 149b, April 2004.

[11] Digital Core Design, http://www.dcd.pl/ .

[12] Quixilica, http://www.quixilica.com/

[13] Nallatech, http://www.nallatech.com/

[14] IEEE Standard Board and ANSI, “IEEE Standard for Binary Floating-

Point Arithmetic,” 1985, IEEE Std 754-1985.

[15] J.Hennessy and D.A.Peterson, Computer Architecture a Quantitative

Approach, Morgan Kauffman Publishers, second edition, 1996.

[16] V.G.Oklobdzija, “An Algorithmic and Novel Design of a Leading Zero

Detector Circuit: Comparison with Logic Synthesis.” IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, pp. 124-128, 1994,

Vol. 2, No. 1.

[17] Israel Koren, Computer Arithmetic Algorithms, A K Peters, second

edition, 2002.

[18] J.D.Bruguera and T. Lang,“Rounding in Floating-Point Addition using a

Compound Adder,” University of Santiago de Compostela, Spain

Internal Report, July 2000.

[19] M.J.Flynn, S.F.Oberman, Advanced Computer Arithmatic Design. John

Wiley & Sons, Inc, 2001.

[20] M.J.Flynn, “Leading One Prediction -- Implementation, generalization,

and application,” Technical Report: CSL-TR-91-463, March 1991.

[21] S.F.Oberman, “Design Issues in High performance floating-point

arithmetic units,” Technical Report: CSL-TR-96-711, December 1996.

[22] N. Shirazi, A.Walters, P.M. Athanas, “Quantitative analysis of floating

point arithmetic on FPGA based custom computing machines”. IEEE

Symp. on Field-Programmable Custom Computing Machines, pp. 155-

163, 1995.

 Fig. 18.The Result Of Floating Point Adder.

BIOGRAPHIES

Ali Farmani received his B.Sc. in Electronics Engineering

from the Shiraz University of Technology, and M.Sc.

degrees in Electronics Engineering from the University of

Tabriz, in 2011.respectively. His main research interests are

in Nano electronic, VLSI architectures and integrated

circuit (IC) design and design digital circuit with VHDL on

FPGA and DSP,Cryptography,digital signal processing,

image, and video processing,design integrated GPS/INS system.

http://www.xlinix/com
http://www.dcd.pl/

