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Abstract- This paper presents the speed control of a DC series 
motor supplied by Photovoltaic (PV) system. The proposed design 
problem of speed controller is formulated as an optimization 
problem. Bacteria Foraging Optimization Algorithm (BFOA) is 
employed to search for optimal Proportional Integral (PI) parameters 
of speed controller by minimizing the time domain objective 
function. The performance of the proposed technique has been 
evaluated with respect to load torque variation, ambient temperature 
and radiation. Simulation results have shown the validity of the 
proposed technique in controlling the speed of DC series motor 
under different disturbances.  
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1.  Introduction 

DC series motors are widely used in traction and 
application that required high starting torque [l-2]. Due to the 
inherent characteristic possessed by the DC motor system, 
such as the complexity of the nonlinear system, unavailability 
of an accurate and precise mathematical model, the use of 
conventional PI controller become a suitable solution due to 
small steady-state error and low costs. However, searching 
the parameters of PI controller is not an easy task, 
particularly under varying load conditions, parameter changes 
and abnormal modes of operation [3-4].  Hence, a novel 
optimization technique called Bacteria Foraging Optimization 
Algorithm (BFOA) is applied in this paper to search for the 
optimal parameters of PI controller for speed control of DC 
series motor. 

 
Photovoltaic (PV) system refers to an array of cells 

containing a solar photovoltaic material that converts solar 
radiation into direct current electricity. Solar PV systems 
work by converting light into electrical power. This is 
achieved using a thin layer of semi-conducting material, most 
commonly silicon, enclosed in a glass or plastic casing. When 
exposed to sunlight the semi-conducting material causes 
electrons in the materials’ atoms to be knocked loose. The 
electrons that are knocked loose then flow through the 
material to produce an electric current known as a DC. The 
DC is carried through wiring to an inverter which converts 
the current to AC so it can be connected to main electricity 
distribution board which either used within the home or fed 
back into the national grid [5-7]. PV is used in this paper to 
power DC series motor. 

 
In last few years, many researchers have posed different 

optimization techniques for enhancing speed tracking system. 

Tabu Search (TS) is discussed in [8] to design a robust 
controller for Induction Motor. However, it appears to be 
effective for the design problem, the efficiency is reduced by 
the use of highly epistatic objective functions (i.e. where 
parameters being optimized are highly correlated), and the 
large number of parameters to be optimized. Furthermore, it 
is time consuming method. Another heuristic technique like 
Genetic Algorithm (GA) is illustrated in [9] for optimal 
design of speed control of Switched Reluctance Motor 
(SRM). Despite this optimization technique requires a very 
long run time that may be several minutes or even several 
hours depending on the size of the system under study. 
Swarming strategies in fish schooling and bird flocking are 
used in the Particle Swarm Optimization (PSO) and presented 
in [10] for optimal design of speed control of different motors 
[11-13]. However, PSO suffers from the partial optimism, 
which causes the less exact at the regulation of its speed and 
the direction. In addition, the algorithm cannot work out the 
problems of scattering and optimization [14, 15]. Also, the 
algorithm pains from slow convergence in refined search 
stage, weak local search ability and algorithm may lead to 
possible entrapment in local minimum solutions. A relatively 
newer evolutionary computation algorithm, called Bacteria 
Foraging (BF) scheme has been presented by [16–18] and 
further established recently by [19–29]. Moreover, BFOA 
due to its unique dispersal and elimination technique can find 
favorable regions when the population involved is small. 
These unique features of the algorithms overcome the 
premature convergence problem and enhance the search 
capability. Hence, it is suitable optimization tool for power 
system controllers. 

 
This paper proposes a new optimization algorithm 

known as BFOA for speed control of DC series motor 
supplied by PV system. BFOA is used for tuning the PI 
controller parameters to control the duty cycle of DC/ DC 
converter and therefore speed control of DC series motor. 
The design problem of the proposed controller is formulated 
as an optimization problem and BFOA is employed to search 
for optimal controller parameters. By minimizing the time 
domain objective function representing the error between 
reference speed and actual one is optimized. Simulation 
results assure the effectiveness of the proposed controller in 
providing good speed tracking system over a wide range of 
load torque, ambient temperature and radiation with 
minimum overshoot/undershoot and minimal steady state 
error. 



    

2. System under Study 
The system under study consists of PV system acts as a 

voltage source for a connected DC series motor. The input of 
PV system is the ambient temperature and radiation, while 
the output is the DC voltage. The proposed controller based 
on BFOA is used to control the duty cycle of DC/DC 
converter and consequently the voltage and speed of DC 
series motor. The schematic block diagram is shown in Fig. 
1. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1 DC Series Motor Construction  
The DC series motor is a varying speed machine with a 

markedly drooping speed torque characteristic of the type. 
For applications requiring heavy torque overloads, this 
characteristic is particularly advantageous because the 
corresponding power overloads are held to more reasonable 
values by the associated speed drops. Very favorable starting 
characteristics also result from the increase in flux with 
increased armature current [30-35]. The parameters of DC 
series motor are shown in appendix. 

The proposed system can be simulated with proper 
mathematic modeling. The DC series motor can be written in 
terms of equations as follows [30].  
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Where 

ai  The armature current,  

tV  The motor terminal voltage,  

aLaR ,  The armature resistance and inductance,  

fLfR ,  The field resistance and inductance, 

r  The motor angular speed, 

mJ  The moment of inertia, 

LT  The load torque, 

f The friction coefficient, 

afM  The mutual inductance between the armature 
and field. 

 
2.2 Photovoltaic Modeling 

Solar cell mathematical modeling is an important step in 
the analysis and design of PV control systems. The PV 
mathematical model can be obtained by applying the 
fundamental physical laws governing the nature of the 
components making the system [5]. 

To overcome the variations of illumination, temperature, 
and load resistance, voltage controller is required to track the 
new modified reference voltage whenever load resistance, 
illumination and temperature variation occurs. I-V 
characteristics of solar cell are given by the following 
equations [6-7]: 
The solar cell mathematical modeling is 
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The module output power can be determined simply from  
                     IVP .                                                     (9) 

Where;  
I , V   Module output current and voltage, 

cI , cV  Cell output current and voltage, 

phI , phV   The light generation current and voltage,    

sI  Cell reverse saturation current, 

scI  The short circuit current, 

oI  The reverse saturation current, 

sR  The module series resistance, 

T Cell temperature, 
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Fig. 1. Overall block diagram of DC series motor for 
control system. 

 



    

K Boltzmann's constant, 

oq   Electronic charge 

KT    (0.0017 A/◦C) short circuit current 
temperature coefficient 

G Solar illumination in W/m2 

gE         Band gap energy for silicon 

A  Ideality factor, 

rT   Reference temperature, 

orI   Cell rating saturation current at rT , 

sn          Series connected solar cells, 

ik          Cell temperature coefficient. 

Thus, if the module parameters such as module series 
resistance ( sR ), reverse saturation current ( oI ), and ideality 
factor (A) are known, the I-V characteristics of the PV 
module can be simulated by using equations (7 and 8).  

 
2.3 DC-DC Converter  

The choice DC-DC converter technology has a 
significant impact on both efficiency and effectiveness. Many 
converters have been used and tested; buck converter is a step 
down converter, while boost converter is a step up converter 
[31]. In this paper, a hybrid (buck and boost) DC/DC 
converter is used. The equations for this converter type in 
continuous conduction mode are: 
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Where K is the duty cycle of the pulse width modulation 
(PWM). BV  , BI  are the output converter voltage and 
current respectively. The Matlab/Simulink [36] of PV system 
and DC-DC converter is shown in Fig. 2.  
 
 
 

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 

3. Objective Function 
A performance index can be defined by the Integral of 

Time multiply Absolute Error (ITAE). Accordingly, the 
objective function J  [37-40] is set to be:   

J =  


0
dtet                                                                        (12) 

Where actualwreferencewe   

Based on this objective function J optimization problem can 
be stated as: Minimize J  subjected to: 

max
pK  PK  pK min , max

IK  IK  IK min                     (13) 

This paper focuses on optimal tuning of PI controller for 
speed tracking of DC motor using BFOA algorithm. The aim 
of the optimization is to search for the optimum controller 
parameters setting that minimize the difference between 
reference speed and actual one. On the other hand, in this 
paper the goal is speed control of DC motor and finally 
designing a low order controller for easy implementation. 
 
4. Overview of BFOA 

Natural selection tends to eliminate animals with poor 
foraging strategies and favor the propagation of genes of 
those animals that have successful foraging strategies since 
they are more likely to enjoy reproductive success. After 
many generations, poor foraging strategies are either 
eliminated or shaped into good ones. The Escherichia coli 
bacteria that are present in human intestine also undergo a 
foraging strategy. The control system of these bacteria that 
dictates how foraging should proceed can be subdivided into 
four sections namely Chemotaxis, Swarming, Reproduction 
and Elimination and Dispersal [16-17]. 

 
4.1 Chemotaxis 

The characteristics of movement of bacteria in search of 
food can be defined in two ways, i.e. swimming and tumbling 
together known as chemotaxis. A bacterium is said to be 
‘swimming’ if it moves in a predefined direction, and 
‘tumbling’ if moving in an altogether different direction. 
Mathematically, tumble of any bacterium can be represented 
by a unit length of random direction φ(j) multiplied by step 
length of that bacterium C(i). In case of swimming, this 
random length is predefined. 

 
4.2 Swarming 

For the bacteria to reach at the richest food location, it is 
desired that the optimum bacterium till a point of time in the 
search period should try to attract other bacteria so that 
together they converge at the desired location more rapidly. 
To achieve this, a penalty function based upon the relative 
distances of each bacterium from the fittest bacterium till that 
search duration, is added to the original cost function. 
Finally, when all the bacteria have merged into the solution 
point, this penalty function becomes zero. The effect of 
swarming is to make the bacteria congregate into groups and 
move as concentric patterns with high bacterial density. 

 
 Fig. 2.  Matlab/Simulink for PV system and DC-DC 

converter. 



    

4.3 Reproduction 
The original set of bacteria, after getting evolved through 

several chemotactic stages reaches the reproduction stage. 
Here, best set of bacteria gets divided into two groups. The 
healthier half replaces with the other half of bacteria, which 
gets eliminated, owing to their poorer foraging abilities. This 
makes the population of bacteria constant in the evolution 
process. 

 
4.4 Elimination and Dispersal 

In the evolution process, a sudden unforeseen event can 
occur, which may drastically alter the smooth process of 
evolution and cause the elimination of the set of bacteria 
and/or disperse them to a new environment. Most ironically, 
instead of disturbing the usual chemotactic growth of the set 
of bacteria, this unknown event may place a newer set of 
bacteria nearer to the food location. From a broad 
perspective, elimination, and dispersal are parts of the 
population level long distance motile behavior. In its 
application to optimization, it helps in reducing the behavior 
of stagnation often seen in such parallel search algorithms. 
The detailed mathematical derivations as well as theoretical 
aspect of this new concept are presented in [18-19]. The 
computational flow chart of BFOA algorithm is shown in 
Fig. 3. The parameters of BFOA are shown in appendix. 
The algorithm of this technique involves two steps. 
 
[Step 1] Initialization  
i) p is the number of parameters to be optimized. 
ii) S is the number of bacteria to be used for searching the 
total region. 
iii) SN  is the swimming length after which tumbling of 
bacteria will be undertaken in a chemotactic loop. 
iv) CN  is the number of iteration to be undertaken in a 

chemotactic loop ( CN > SN ). 

v) reN  is the maximum number of reproduction to be 
undertaken. 
vi) edN  is the maximum number of elimination and 
dispersal events to be imposed over the bacteria. 
vii) edP  is the probability with which the elimination and 
dispersal will continue. 
viii) P (1-p, 1-S, 1) is the location of each bacterium which is 
specified by random numbers on [-1, 1]. 
ix) The value of C (i) which is assumed to be constant in this 
case for all the bacteria to simplify the design strategy. 
x) The values of attractd , attract , repelenth  

and repelent . 

Step-2 Iterative algorithm for optimization 
This section models the bacterial population chemotaxis, 
swarming, reproduction, elimination and dispersal (initially, 

j=k=l=0). For the algorithm updating i  automatically 
results in updating of P. 
[1] Elimination-dispersal loop: l=l+1 
[2] Reproduction loop: k=k+1 

[3] Chemotaxis loop: j=j+1 
a) For i=1, 2,…, S, calculate cost function value for each 
bacterium i as follows. 

 Compute value of cost function ),,,( lkjiJ . 
Let 
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 Let ),,,( lkjiswJlastJ   to save this value since 
one may find a better cost via a run. 

 End of For loop 
b) For i=1, 2,….S take the tumbling/swimming decision 

 Tumble: generate a random vector pi  )(  with 
each element )(im m=1,2,…p, 

 Move: Let  

)()(
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iiT
i

iClkjilkji
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
  Fixed 

step size in the direction of tumble for bacterium i is 
considered. 

Compute ),,1,( lkjiJ  and

)),,1(),,,1((),,1,(),,1,( lkjPlkji
ccJlkjiJlkjiswJ    

Swim 
i) Let m=0 (counter for swim length). 
ii) While SNm  (have not climbed down too long) 

 Let m=m+1 
 If lastJlkjiswJ  ),,1,( (if doing better), let 

),,1,( lkjiswJlastJ  and let  
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   and use 

this ),,1( lkji  to compute the new ),,1,( lkjiJ   
 Else, let SNm  . This is the end of the while 

statement. 
iii) Go to next bacterium (i+1) if Si   
 
 
 
 
 
 
 
 



    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[4] If j< cN , go to [step 3]. In this case, continue chemotaxis, 
since the life of the bacteria is not over. 
[5] Reproduction 

a) For the given k and l, and for each i=1,2, ..S, let  

  ),,,(
...1

min lkjiswJ

cNj
i
healthJ









  be the health 

of the bacterium i( a measure of how many nutrients 
it got over its life time and how successful it was at 
avoiding noxious substance). Sort bacteria in order 
of ascending cost healthJ . 

b) The 2/SrS  bacteria with highest healthJ values 

die and other rS bacteria with the best value split. 

[6] If k< reN , go to [step 2]. In this case, one has not reached 
the number of specified reproduction steps, so one starts the 
next generation in the chemotactic loop. 
[7] Elimination-dispersal: for ,N1,2,....,i  with 
probability edP , eliminate and disperse each bacterium, and 
this result in keeping the number of bacteria in the population 
constant. To do these, if you eliminate a bacterium, simply 
disperse one to a random location on the optimization 
domain. If  l< edN , then go to [step 2]; otherwise end. 
The detailed mathematical derivations as well as theoretical 
aspect of this new concept were presented [16-17]. 
 
5. Results and Discussion  

In this section different comparative cases are examined 
to show the effectiveness of the proposed BFOA controller 
for load torque, ambient temperature and radiation variations.  
 
5.1 Response under step change for load torque 

Figs. 4-5 show the step change of load torque, the 
current, voltage and power of PV system. The motor current, 
control signal and speed response under variation of the load 
torque are shown in Figs. 6-7 respectively. The actual speed 
tracks the reference speed with minimum overshoot and 
settling time. The settling time is approximately 0.03 second. 
Moreover, the speed response is very fast for the step 
variation of load torque. The parameters of proposed PI 
controller are PK = 0.0959,  iK = 2.2626.  
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Fig. 3. Flow chart of BFOA. 
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Fig. 4. Step change for load torque. 

 



    

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2 Response under step change of radiation 
In this case, the system responses under variation of PV 

system radiation are obtained. Figs. 8-9 show the variation of 
the PV system radiation as an input disturbance and the 
control signal, motor current, current, voltage and power of 
PV system respectively. Moreover, the system responses 
based on BFOA are shown in Figs. 10 and 11. It is clear from 
these Figs., the proposed BFOA controller improves the 
speed control and the current response of DC series motor 
effectively. Also, the overshoot and settling time are highly 
minimized. Hence, PI based BFOA greatly enhances the 
performance characteristics of DC series motor.  
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 Fig. 6. The control signal and armature current. 
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 Fig. 7. The reference and actual speed for the  

DC series motor. 
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Fig. 5. The PV current, voltage and power. 
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 Fig. 8. Step change for PV system radiation. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

Time (second) 

P
V

 C
ur

re
nt

 (a
m

pe
r)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

Time (second) 

P
V

 V
ol

ta
ge

 (v
ol

t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

Time (second) 

P
V

 P
ow

er
 (w

at
t)

 
 Fig. 9. The PV current, voltage and power. 

 



    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.3 Response under step change of load torque, radiation 
and temperature 

The effect of applying step change of load torque, 
radiation and temperature of PV system is shown in this case. 
Figs. 12-13 illustrate the variation of load torque, radiation, 
temperature and the output of PV system. The control signal, 
motor current and a comparison between the actual and 
reference speed are shown in Figs. 14-15 respectively. From 
these figures, the steady state and dynamic operation of DC 
series motor in terms of over shoot and settling time has been 
enhanced. Also, the actual speed tracks the reference speed at 
every step. Moreover, the proposed BFOA controller is 
effectively improved the speed control of DC series motor. 
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 Fig. 10. The control signal and motor current. 
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 Fig. 11. The reference and actual speed for  

the DC series motor. 
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 Fig. 12. Step change for load torque, PV system radiation 

and PV system temperature. 
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 Fig. 13. The PV current, voltage and power. 
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Fig. 14. The control signal and motor current. 
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5.4 Response under variables change of load torque, 
radiation and temperature 

In this case, the system response under variations of load 
torque, radiation and temperature is obtained. Figs. 16 -17 
show the change of load torque, radiation, temperature and 
parameters of PV system respectively. Moreover, the effect 
of the proposed BFOA controller on speed response is 
illustrated in Fig. 18. It is clear from this Fig, that the 
proposed BFOA controller is robust in tracking every change 
of reference speed. Also, the proposed controller has a small 
settling time and system response is quickly driven with the 
reference speed. Hence, the potential and superiority of the 
proposed BFOA controller is demonstrated. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. Conclusions 

In this paper, a novel method of speed controller of DC 
series motor is proposed via BFOA. The design problem of 
the proposed controllers is formulated as an optimization 
problem and BFOA is employed to search for optimal 
parameters of PI controller. By minimizing the time domain 
objective function, in which the difference between the 
reference and actual speed are involved; speed control of DC 
series motor is improved. Simulation results emphasis that 
the designed BFOA tuning PI controller is robust in its 
operation and gives a superb performance for the change in 
load torque, radiation, temperature. Besides the simple 
architecture of the proposed controller, it has the potentiality 
of implementation in real time environment. 
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APPENDIX 
The system data are as shown below: 
a) DC series motor parameters are shown below. 

 
DC motor parameters Value 

Motor rating 
Motor rated voltage 
Motor rated current 

Inertia constant   mJ  

Damping constant  B 
Armature resistance  aR  

Armature inductance   aL  

Motor Speed 
Full load torque 

3.5 HP 
240 V 
12 A 

0.0027 Kg-m2 

0.0019 N.m.Sec./rad 
1.63  Ω 

0.0204 H 

2000 rpm 
19 N. m 

 
b) Bacteria parameters: Number of bacteria =10; number of chemotatic steps 

=10; number of elimination and dispersal events = 2; number of 
reproduction steps = 4; probability of elimination and dispersal = 0.25; the 
values of attractd =0.01; the values of attract =0.04; the values of 

repelenth =0.01; the values of repelent =10. 


