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Abstract: A new method for tuning the parameters of a 
conventional power system stabilizer (CPSS) using the 
internal model control (IMC) method is presented. It is 
shown that the controller designed by the IMC method for 
a power system model can be reduced to the CPSS form, 
and the performance of the IMC-based CPSS is related to 
two tuning parameters so on-line tuning is easy. Simulation 
studies on a single machine infinite bus (SMIB) system and 
a four-machine two-area system show that the IMC-based 
CPSS can achieve good performance in damping both the 
local modes and the intra-area modes. 
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1. Introduction 
 In the past five decades power system stabilizers 
(PSS) have been used to provide additional damping to 
automatic voltage regulators (AVR). High gain, fast 
acting AVRs are often designed in many generators to 
enhance large scale stability to hold the generator in 
synchronism with the power system during large 
transient fault conditions. But the high gain of 
excitation systems can decrease the damping torque of 
generator. Thus a supplementary excitation controller 
referred to as PSS have been added to synchronous 
generators to counteract the effect of high gain AVRs 
and other sources of negative damping [1]. With the 
growth of interconnected power systems and 
particularly the deregulation of the industry, PSSs 
become more important in suppressing the low- 
frequency oscillation and enhancing the system 
dynamic stability. 
 Conventional PSS (CPSS) is widely used in existing 
power systems. The parameters of CPSS are usually 
determined based on a linearized model of the power 
system around a nominal operating point where they 
can provide good performance [2]. Since power 
systems are highly non-linear systems, with 
configurations and parameters that change with time, 
the CPSS design based on the linearized model of the 
power system may not guarantee its performance in a 
practical operating environment. 
 To improve the performance of CPSS, numerous 
techniques have been proposed for the PSS design, e.g, 
pole-placement [3-6], damping torque concepts [2,7],  
robust [8-14], adaptive [15,16], nonlinear and variable 
structure [17-19], and the different optimizations and 
artificial intelligence techniques [20-25]. Simulation 
results have demonstrated the potential of these 

methods for practical applications. However, most 
methods have not yet been widely adopted in practical 
power utilities, especially those methods having a 
controller structure different from the CPSS form. 
Some of the reasons are [26]:  
•  Not easy to tune on-line. On-line tuning is important 

for practical applications, since there are always 
modeling and other errors. One cannot expect that 
controllers can be successfully put into operation 
for a complicated system without any final on-line 
tuning. 

•  Not enough robustness. Stabilizers are normally 
designed for the particular operating condition 
where they are most needed, however, they should 
also work under other operating conditions. 
Moreover, the design method should be insensitive 
to inaccurate data and unmodeled system dynamics. 

•  Not reliable in the long run. Theoretically 
self-tuning control can solve the above robustness 
issue. However, the convergence of the 
identification is difficult to guarantee. Furthermore, 
since inclusion of a self-tuning controller produces 
an additional non-linear system, it is also difficult to 
prove stability. 

 In this paper, a robust tuning method for the PSS 
will be proposed using the internal model control 
(IMC) method. It is shown that the controller designed 
by the IMC method can be reduced to the CPSS form, 
and the performance of the IMC-based CPSS is related 
to two tuning parameters so on-line tuning is easy. 
Simulation studies on a single machine infinite bus 
(SMIB) system and a four-machine two-area system 
show that the IMC-based CPSS can achieve good 
performance in damping both the local modes and the 
intra-area modes. 
 The paper is organized as follows: In Section 2, the 
power system model for PSS tuning is discussed and a 
transfer function model suitable for IMC tuning is 
proposed. In Section 3, the IMC design method is 
reviewed. Then the PSS is designed using the IMC 
method in Section 4, and the designed PSS is reduced to 
the CPSS form. In Section 5, the effectiveness of the 
IMC-based PSS tuning is demonstrated on two test 
systems. Finally, the paper is concluded in Section 6. 
 All the symbols used in this paper are listed in Table 
1. All quantities are in pu except M in seconds, the time 
constants in seconds and δ in radians. 
 
 

 



 
 

Table 1 List of Symbols 
  small deviation 
  rotor angle 
  rotor angle speed 

B  base speed 
 H rotor inertia constant 
 D rotor damping 

,d qx x  d and q axes synchronous reactances 
'
dx  d-axis transient reactance 

,d qi i  d and q axes generator currents 

,d qv v  d and q axes generator voltages 

tV  generator terminal voltage 
'
qE  voltage proportional to field flux linkage 
'
0dT  d-axis transient open-circuit time constant 

bE  infinite bus voltage 

fdE  generator field voltage 

mT  mechanical torque 

eT  electrical torque 

AK  AVR gain 

AT  AVR time constant 

refV  AVR reference input 

ex  external (line) reactance 
,P Q  real and reactive power loading 

1 6, ,K K  parameters of linearized system model 
 s Laplace operator 
 
2. Power system model 
 We consider the SMIB system. The model is simple 
but captures the essential dynamics of a power system 
and has been widely used for PSS design purpose. 
 It is assumed that the machine is equipped with an 
automatic voltage regulator (AVR) and a fast static 
excitation system. The d- and q-axis damper windings 
are ignored, and the machine is represented as follows: 

 1 ( )
2 m eT T D

H
                               (1a) 
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d q qv x i                                                    (1f) 
' '

q q d dv E x i                                            (1g) 
2 2 2

t q dV v v                                               (1h) 
 The linear time invariant model for this system is 
constructed by linearizing the system equations (1) 
around a given steady-state operating condition.  The 
block diagram of the linearized system is shown in 

Fig.1(a) [27]. 
 Three variables can be used as inputs to the PSS, 
i.e.,  ,   and )( emT T  .   is the most often 
used variable, and in this paper we will discuss such 
case. By block diagram reduction, it is found that 
Fig.1(a) can be reduced to Fig.1(b), where 
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(b) Equivalent structure 

 
Fig.1 Linearized model of SMIB 
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 The objective of the PSS design is to find a 
controller 

                     (5) 
 
such that the effect from the disturbance (  or 



 

) to the output ( ) is minimized while keeping 
the internal stability of the closed-loop system. In other 
words,  must stabilize the transfer function 
from  to , 

           (6) 

and minimize the transfer function 

                    (7) 

where 

              (8) 

for rejecting , or 

              (9) 

for rejecting . 
 We are interested in the conventional PSS, i.e.,  

         (10) 

In practical power utilities, an optional washout filter of 
the form  is cascaded with (10) to filter the low 
frequency noise. 
 
3. TDF-IMC design 
 Internal model control (IMC) is a popular control 
method in process control [28] and is widely used to 
tune PID controllers in chemical processes. In [29] the 
method was shown to be very effective in tuning load 
frequency controller for power systems, which 
motivated us to investigate IMC method for PSS 
design. The TDF-IMC tuning procedure goes as 
follows [29]: 
1) Decompose the plant model  into two parts: 

                        (11) 
where  is the minimum-phase (invertible) part 
and  is the allpass (nonminimum-phase with 
unity magnitude) part. 
2) Design a setpoint-tracking IMC controller 

                  (12) 

where  is a tuning parameter such that the desired 
setpoint response is , and r is the relative degree 
of . 
3) Design a disturbance-rejecting IMC controller of the 
form 

           (13) 
where  is a tuning parameter for disturbance 
rejection, m is the number of poles of  such that  

 needs to cancel. Suppose  are the 
poles to be canceled, then  should satisfy 
       (14) 
4) Transform it to a conventional unity feedback 
controller 

               (15) 

The TDF-IMC design requires tuning two parameters 
(  and ) to achieve the desired tracking and 
disturbance performance. Usually the smaller they are, 
the better performance the IMC-based controller can 
achieve at a sacrifice on robustness. 
 
4. Design of PSS via IMC 
 The above IMC design procedure can be applied 
directly to design PSS using model (6). However, such 
a design will lead to a high-order controller and cannot 
be realized as a conventional PSS. Since a CPSS is 
widely accepted in power utilities, we would like to 
have an IMC design that leads to CPSS structure. 
 To achieve the goal, we notice that  in 
Fig.1(b) is in the feedback loop, so when we design the 
PSS we can first ignore it. In other words, we can 
design a controller  for the forward-path 
transfer function in Fig.1(b) . 

  

  (16) 

and then add the PI controller  to form the final 
PSS, i.e., 

            (17) 
The procedure is illustrated in Fig.2. 
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Fig.2 IMC design for SMIB 
 

Now by the IMC design procedure, the setpoint- 
tracking IMC for (16) is 

(18) 

We note that  is the natural frequency of the SMIB 
system and the source of oscillations (small or negative 
damping ratio . So the disturbance- rejection IMC 

 can be used to cancel the poles of  to 
improve damping.  
 The disturbance-rejection IMC for (16) has the form 

                 (19) 

with ,  satisfying 
          (20) 

where  are two poles of , i.e., 
 



 
 

                (21) 
So  can be solved from the following equations 

 
  (22) 

It should be pointed out that a fourth-order  
can be used to further cancel the poles of , but it 
is not necessary since  is the frequency due to the 
fast static excitation system and generally has positive 
damping ratio . Furthermore, the final controller will 
be too complex to explore the potential structure if a 
fourth-order  is used. 

Now transform the TDF-IMC controller to the 
conventional feedback controller 

     (23) 

where 
 

                                        (24) 
 

By (22),  must have two zeros at , so it 
contains the factor . It is also 
obvious that  has a zero at , so  can be 
factored as 

(25) 
where the parameters  are 

 

                      (26) 

 

So we have 

 

(27) 
This controller contains a double integrator. Since 

the PSS aims to damp out local and inter-area mode 
oscillations with frequency around 0.1-5.0Hz, the high 
gain at low frequency ( Hz) is undesired, so the 
double integrator can be removed from the controller 
by approximating  with .  

So the final IMC-based PSS has the following form 

           (28) 

It can be implemented in the conventional PSS form 
(10) with 

 

                    (29) 

where  are zeros of . If  
are complex, they can be set to . 
Similarly,  are zeros of , and if 

 are complex, they can be set to  
. 

Sample responses of a SMIB system with the three 
controllers ((27), (28) and (10),  is added to form 
the final PSS) are shown in Fig.3 when there is a step 
disturbance pu at . The system is 
discussed in [30] and the six parameters of the 
linearized model are 
  
        (30) 
under nominal loading condition: ,  
and .  

 

0 1 2 3 4 5 6
-4

-2

0

2

4

6

8
x 10-4




0 1 2 3 4 5 6
-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06


 u

PS
S

Time(sec.)

 
 

Fig.3 Responses of a SMIB system under designed PSSs 
with  (solid: (10)+  ; dashed:(28)+ ; dashdotted: 

(27)+  ) 
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Fig.4 Responses of a SMIB system under designed PSSs 
without  (solid: (10) ; dashed:(28); dashdotted: 

(10)+ ; dotted: (28)+  ) 
 
The zeros and poles of the controller (28) are 

complex so the controller (10) is different from (28). 
However, it can be observed that the responses of the 
two controllers are very close and (28) is just slightly 
better. So generally it is no harm to implement (28) in 
the form of (10). It is also observed that the double 
integrator in (27) causes large undershoot thus 



 

undesired.  
While the final PSS formed by adding  to (28) 

or (10) achieves good damping performance, the PSS 
output ( ) does not return to zero as  
contains an integrator. To make sure that the PSS 
output returns zero the integrator can be removed. 
Furthermore,  are small compared with  
thus  is small. With the above reasons,  does 
not need to be added to the designed controller (28) or 
(10). In fact, with the same SMIB system the responses 
of the two controllers are shown in Fig.4. It is observed 
that without  the damping performance slightly 
degrades. However, compared with degradation due to 
possible low frequency noise, it is no harm and 
convenient to take (28) or (10) as the final PSS. 

In summary, by some simplifications the TDF-IMC 
-based PSS has the CPSS form and the parameters of 
the CPSS are directly related to system parameters and 
two tuning parameters ( ). Disturbance-rejection 
performance and robustness of the CPSS are 
determined by careful choice of the two tuning 
parameters. 
 
5.  Case studies  

Two examples are used to illustrate the proposed 
tuning method. One is a SMIB system to test the 
performance for local mode oscillations and the 
robustness with different operating conditions. The 
other is a four-machine two-area system to test the 
performance for intra-area mode oscillations and 
performance under large perturbations.  
 
5.1 Test in SMIB system 

Consider the SMIB system discussed in [11,14] 
with 

 
  

            (31) 
The operating condition for the system is completely 
defined by the values of the real power P and the 
reactive power Q at the generator terminals and the 
impedance of the transmission line .  

To test the robustness of the tuned PSS, suppose P, 
Q, and  vary independently over the range 

, , and . 
This encompasses almost all practical operating 
conditions for the generator and very weak to very 
strong transmission systems. The nominal operating 
point is  as in [11]. The 
final CPSS (10) has the following parameters tuned 
with : 
  
                         (32) 

The Bode diagrams of the proposed CPSS and the 
CPSS optimized in [11] by the simplex method using 
QFT and the PSS designed in [14] using LMI method 
are shown in Fig.5. It is clear at the interested 
frequencies the proposed CPSS has the largest 

magnitude and is expected to have the best disturbance- 
rejection performance. 
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Fig.5 Bode plots of PSSs for SMIB test system (solid: 

proposed; dashed: [11]; dashdotted: [14]) 
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(a) Rotor angle speed 
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(b) PSS ouput 

 
Fig.6 Responses of SMIB test system (solid: proposed; 

dashed: [11]; dashdotted: [14]) 
 
 

 To show the performance of the proposed CPSS, 
suppose at t=1 the SMIB system is subject to a 5% step 
disturbance at the reference voltage at three typical 
operating conditions: 



 
 

 Case (a): ;   
 Case (b): ;  
 Case (c): .  
The responses of the power system with the proposed 
CPSS and the PSSs in [11] and [14] are shown in Fig.6. 
The proposed PSS achieves the best damping without 
loss of robustness. 

 
5.2 Test in Multimachine Power System 
 The PSS tuning for a SMIB system shows that the 
tuned PSS is satisfactory in damping local modes, we 
will show that it can achieve good performance in a 
multimachine system with a strong inter-area mode. 
For this purpose, we designed CPSSs for the 
well-known four-machine, two-area benchmark system 
shown in Fig.7. The data of this system is given in [1]. 
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Fig.7 Four-machine two-area benchmark system 
 
The two areas are assumed to be identical thus only 

two PSSs are needed to be tuned for generator G1 and 
G2. It is also noted that G1 and G2 differs only in the 
inertia constants (H) and other parameters are the 
same, so it is simple to use one parameter setting for 
both G1 and G2. We get the following parameters for 
the CPSS with  and : 
  
                         (33) 

The Bode diagrams of the proposed CPSS and the 
CPSS given in [1] are shown in Fig.8. A washout filter 
with time constant  is cascaded in the 
implementation. It is observed that at the interested 
frequencies the proposed CPSS has larger magnitude 
and phase lead thus has better disturbance-rejection 
performance. 

To test the performance of the proposed CPSS, 
suppose there is a 12-cycle pulse on the voltage 
reference of G1 at t=1, the responses of the system with 
the proposed CPSS and CPSS given in [1] are shown in 
Fig.9. It is observed that the proposed CPSS achieves 
better damping. 

If we need to further improve the damping, we just 
need to decrease  or . For instance, if  is 
decreased to 0.05, then we get a CPSS with the 
following parameters: 
  
                         (34) 
 

The rotor angle speed responses of the system with the 
re-tuned CPSS are shown in Fig.10. The performance 
is indeed improved. 

5

10

15

20

25

30

35

M
ag

ni
tu

de
 (

dB
)

10
-2

10
-1

10
0

10
1

10
2

-90

-45

0

45

90

Ph
as

e 
(d

eg
)

Bode Diagram

Frequency  (rad/sec)

 
Fig.8 Bode plots of PSSs (solid: proposed; dashed: [1]) 
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(a) Rotor angle speed 
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(b) PSS output 

Fig.9 Responses of four-machine two-area system: small 
signal disturbance (solid: proposed;dashed: [1]) 
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Fig.10 Responses of four-machine two-area system with 

re-tuned CPSS: small signal disturbance (solid: CPSS tuned 
with ; dashed: CPSS tuned with 

; dashdotted: [1]) 
 

A PSS should not only have good small-signal 
performance, but also good performance during large 
perturbations and good robustness with respect to 
changing operating conditions. To show the 
performance of the PSSs against large perturbations, 
suppose there is a 8-cycle three-phase fault with the 
outage of one 230kV line at t=1, the responses of the 
system are shown in Fig.11. The proposed two CPSSs 
can ensure a smooth transition into another stable 
operating point as the CPSS given in [1]. 
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Fig.11 Responses of four-machine two-area system with 

re-tuned CPSS: large signal disturbance (solid: CPSS tuned 
with ; dashed: CPSS tuned with 

; dashdotted: [1]) 
 

6.  Conclusion  
IMC method was applied to design PSS for power 

systems. By some simplifications, the IMC-based PSS 
was found to be able to be reduced to the conventional 
PSS structure. The parameters of the CPSS are directly 
related to the system parameters and two tuning 
parameters, which makes it easy to tune on-line. 
Simulations on a SMIB system and a multimachine 
system showed that with careful choice of the tuning 
parameters the tuned CPSS can achieve good 

performance with respect to both local and intra-area 
modes under wide range operating conditions and large 
disturbances.  

IMC method is known to be able to achieve good 
compromise between robustness and disturbance- 
rejection performance for PID tuning. It is possible to 
use the guidelines on selecting tuning parameters for 
PID controllers in PSS tuning, however, due to the 
difference between the dynamics of the power systems 
and the simple first-order or second-order plus dead- 
time models in PID tuning, the selection of tuning 
parameters are not straightforward. Further research on 
this topic is under investigation. 

Large power systems may exist strong inter- 
connections. Whether the method is effective in PSS 
tuning for large interconnected power system will also 
be investigated. 
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