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Abstract- In this paper, a new comprehensive 

framework is proposed to diagnose stability status of 

power systems and generators. The proposed 

method predicts rotor angles of generators using an 

online algorithm in the first place. Since it 

compensates for the delay in PMUs, rotor angles of 

generators will be available online with an 

acceptable accuracy. The proposed approach 

properly recognizes the power system stability status 

by calculating the difference between rotor angles of 

mutually coupled generators using the online data. 

Obtained value compare with threshold value and 

when this value exceeds threshold value, warning is 

given. Accordingly, it identifies the most critical 

generator using the fault occurrence and fault 

clearing time data. Moreover, the proposed method 

predicts the generator stability status using the 

boundary decision and the previously collected data, 

150ms after clearing the fault. Decision boundaries 

are an inherent characteristic of each generator 

which can predict the generator stability status with 

minimum errors. As a result, the proposed method 

determines critical and unstable generators for 

generator shedding to prevent blackout in the 

system. The potential of this approach is tested using 

IEEE 39-bus (New England system) system. 

 

Keywords: Generator status prediction, Online 

monitoring, PMU, Protection Scheme, Stability 

status prediction, Transient stability assessment. 

1.   Introduction 

Stability status of power systems is an essential part 

of their operation and planning. 

Nowadays, because of the restricting and economic 

constraints to develop power grids, power systems 

operate within their stability border. Accordingly, 

the online monitoring of power system stability 

status has been recognized as an important and 

initial task specially for preventing blackouts. Fast 

recognition of transient instability situation is very 

important to buy enough time for determining 

proper remedial control action. Numerous attempts 

have been made to develop an approach for quick 

predicting of stability status [1] and prediction of 

transient stability status [2-7]. 

Presence of phase or measurement units in power 

systems with modern communication facilities can 

change many traditional methods of monitoring, 

controlling and protecting the power systems [8]. 

Available online data is a key feature for exact 

prediction of power systems transient stability 

status, and accordingly, to avoid blackouts. Phasor 

measurement units (PMU) [9] make the data of 

different elements of power system available and 

thus make the online monitoring almost possible. 

Yet, for exact online monitoring of data, delay of 

PMU's and communication links should be 

compensated. In the literature [10]-[11], decision 

tree (DT) method is proposed for processing data 

collected by PMU. DT method uses voltage 

magnitude and voltage angle of each bus as the input 

data for the algorithm. Artificial Neural Network 

(ANN) method is also a powerful tool which is used 

for classifying various types of data into pre-defined 

classes. This method has been used in several studies 

for transient stability prediction of power systems 

[12]-[13]. In [14], support vector machine (SVM) is 

used to define stability boundaries in power 

networks. In [6] a modern machine learning based 

on lasso algorithm, the transient stability boundary 

is estimated. The references for transient stability 

prediction are a subset of machine learning methods. 

The main Problems of these methods include load 

changing, configuration of network, and etc. In 

addition, efficiency of these methods completely 

depends on the training process. Therefore, training 

should be comprehensive and consist of different 

types of contingencies [15]. 

Other categories which identify transient stability 

status use generator energy [1]. In reference [16], a 

special protection scheme is proposed in which after 

the fault occurrence and transient stability is 

predicted. These methods are accurate because they 

solve the generator equations to predict its stability 

status. However, their speed is low. 

Moreover, the presence of micro grids in the power 

system provides new situation for the analysis of 

transient stability. In [17], transient stability is 

assessed in the presence of Doubly Fed Induction 
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Generator (DFIG), and a wind power controller for 

improvement of transient stability is designed. 

The above mentioned methods have a common 

problem; none of them can predict the rotor angles. 

Therefore, they have a limited time for prediction 

and finding the remedial control action. The 

proposed method in this paper presents a new 

algorithm for prediction of transient stability status 

of power systems. This algorithm provides 

capability of online monitoring of rotor angles with 

high precision and compensates delays of 

transferring data to control center. Using the 

definition of system transient stability and trial and 

error method, the proposed algorithm predicts the 

system transient stability status. Besides, it 

determines the most critical generator using data of 

rotor angle for different generators. Thus, based on 

the collected data by PMU and decision boundary, 

the algorithm recognizes the most critical and 

unstable generators which need to be shed. 

The rest of this paper is organized follows; Online 

monitoring of rotor angle of generators is explained 

and simulated in section II. The proposed method is 

explained in Section III. In section IV, the proposed 

method is used for prediction of transient stability 

status of IEEE 39- bus system. The obtained results 

by the proposed methods are analyzed in this 

section. Section V concludes the paper. 

 

2. Online Monitoring 

In order to enable the system to make control actions 

in real time, the rotor angles of generators should be 

known at the time of operation. However, the 

inevitable transfer time of the data provided by the 

PMUs, imposes a certain delay on the arrival of rotor 

angles data 

[18], [19]. Hence, it is necessary to compensate this 

delay for the proper operation of the system. 

We consider the rotor angle of a generator as the 

time series 𝛿(𝑡). Then, the delay compensation 

problem reduces to a time series prediction problem. 

In this scenario 

𝛿(𝑡) = 𝑓(𝛿(𝑡 − 1), 𝛿(𝑡 − 2), … , 𝛿(𝑡 − 𝑛)) + 𝜀𝑡         (1) 

Where 𝑓 is an arbitrary nonlinear function, and 𝜀𝑡 is 

the independent and identically distributed random 

error. This error is a result of the modeling error and 

compensates the effect of neglecting the effects of 

other variables in the estimation of 𝛿(𝑡). In this 

formulation, the delay compensation problem 

translates to finding a nonlinear function 𝑓 based on 

the past values of 𝛿. 

2.1 Online Time Series Prediction Using 

Incremental Support Vector Regression 

Born in the field of statistical learning theory, 

Support Vector Regression (SVR) is a popular 

method for solving nonlinear regression problems. 

Considering a finite training sample 𝑆 =
{𝑥𝑖 , 𝑦𝑖}𝑖=1…𝑁, it first maps the input into a high 

dimensional space using a nonlinear mapping 𝜙, and 

then solves the linearized problem in this space. The 

linearized model is given by 

𝑓(𝑥, 𝜔) =< 𝜔, 𝜙(𝑥) > +𝑏                                         (2) 

Where  𝜔 represents the weight vector, b is the bias 

term, and  <. , . > denotes a dot product in the high 

dimensional space. The weight vector and the bias 

term are calculated by minimizing a convex cost 

function, consisting of terms for model complexity 

and empirical risk. The optimization problem for the 

weight vector can be defined as follows [20]: 

𝑚𝑖𝑛 𝑅 =
1

2
‖𝜔‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖

∗)                          (3)

𝑁

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜔) − 𝑏 ≤ 𝜀 + 𝜉𝑖

𝑓(𝑥𝑖 , 𝜔) + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗ ≥ 0

    (4) 

In this formulation, C is the regularization parameter 

which determines the trade-off between the model 

complexity and the error toleration up to the amount 

specified by 𝜀. This optimization problem is solved 

for ω and b and then the nonlinear function f(.) is 

calculated as a function of training samples 𝑥𝑖. 

However, in the case of online time series prediction 

problem, one would like to update the model from 

incoming data in real time to make predictions based 

on this model. For this purpose, Accurate Online 

Support Vector Regression (AOSVR) is used to 

update the trained SVR function whenever a new 

sample is added to the training set S [21]. The online 

algorithm produces the exact same SVR function as 

the batch algorithm with a significant reduction of 

computational cost and thus is well suited to a real 

time prediction paradigm. 

2.2 Delay Compensation Using SVR 

The expected delay of the data transfer is 150ms. 

Assuming a sampling time of 10ms, this means that 

we have to predict the value of rotor angles 15 steps 

ahead. The regression problem defined in (1) can be 

solved using AOSVR, which compensates the 

expected delay and predicts the rotor angles of the  



 

Table 1 the prediction of the rotor angles using AOSVR 

 Stable faults Unstable faults 

𝑀𝐴𝑃𝐸𝑒𝑟𝑟𝑜𝑟  5.45% 9.32% 

 

 

Figure 1. The delay compensation of the rotor angles using AOSVR (a) the prediction result during a stable fault 

occurrence and (b) an unstable case. 

 

generators in New England System. Figure 1 shows 

the prediction results of the rotor angles during a 

stable and unstable fault occurrence, and  

Table 1 reports the prediction error for the stable and 

unstable cases in terms of mean absolute percentage 

error (MAPE). The results show that the delay of the 

rotor angles can be reliably compensated for either 

stable or unstable fault conditions. 

Before introducing this method, delay of PMUs was 

a huge problem for transient stability prediction. It 

always caused time limitations for prediction and 

remedial control actions and thus, often blackout 

occurred. On the other hand, according to table I, the 

rotor angles of stable and unstable generators are 

predictable with a high accuracy by our explained 

approach. Therefore, if an exact method is utilized, 

the available data will be sufficient to predict 

stability status of power system. 

3. Proposed Method 

Because of time limitation for remedial action to 

prevent instability and loss of synchronism in a 

power system, prediction of stability must be done 

in a short time interval after occurring a disturbance. 

Therefore, precision of the prediction and selecting 

the true generator for generator shedding in an 

emergency situation are two main issues in transient 

stability analysis. This paper offers a new algorithm 

for prediction of transient stability status of power 

systems and generators. Different steps of the 

algorithm are explained one by one in the following 

sections. 

3.1 Prediction of Transient Stability Status of 

Power System 

As already mentioned, definition of transient 

instability and loss of synchronism is an important 

issue. Loss of synchronism generally depends on 

maximum deviation of machine rotor angles [22]. 

This maximum value may differ from one power 

system to another. 
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All values of set A should be less than the defined 

threshold value. Maximum value of matrix A is 

determined and compared with the obtained 

threshold value [23]. The threshold value depends 

on network and, for each system, can be determined 

using trial and error method. If any instantaneous 

value of A becomes greater than the threshold value, 

a warning is being issued, otherwise/then, the matrix 

will be updated and next sample is checked. This 

process continues until (7) is satisfied. Figure 2 

illustrates the rotor angles change versus time. Also, 

it shows the maximum value of set A for a three 

phase short circuit at a 39-Bus system. 

According to (7), if the maximum value of A at 

mtt   becomes greater than the maximum value of 

A at, and for next sample, this trend 1 mtt  

continues, the algorithm stops. IEEE 9-Bus, IEEE 

39-Bus and Khorasan power system [24] are 

considered as case studies in this paper. Threshold 

values for these systems are obtained by trial and 

error using numerous and different simulations. 

Obtained threshold values are shown in table 2. 

Values of k in (7) are similar to the threshold value 

and depend on the particular system that is being 

studied. 

In the following sections, simulation studies of IEEE 

39-Bus system are provided where the obtained 

threshold values for that has been approved. To 

achieve this goal, a sample for both marginal stable 

and unstable cases for this network is intended. 

Regarding this issue, which measurement of rotor 

angle is difficult, voltage phase angle is used instead 

of rotor angle. 

In the following Figure, a three phase short circuit is 

applied to line 23-24 of IEEE 39-Bus system for 260 

ms in (a) and 270 ms in (b). 

As shown in Figure 3, voltage angles of different 

generators in (a) are stable as a result of which the 

system is stable, too. However, in (b), voltage angles 

of two generators are unstable and thus, the system 

is unstable. Now, these two cases are checked with 

the threshold value. The difference between mutual 

generators in these cases is shown in table 3. 

 

Figure 2.  Calculation of maximum value of matrix A base on time 

 

Table 2 Obtained threshold value for studied systems 

Studied systems Threshold 

value 

k 

IEEE 9-Bus system 175 2 

IEEE 39-Bus system 190 2.5 

Khorasan power system 205 3 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
-100

-50

0

50

100

Time (sec)

 

 

R
o

to
r 

A
n

g
le

s 
(d

e
g

) G36

G31

G30

G38

G39

G33

G34

G32

G37

G35
Tcl+2Tcl+1Tcl Tcl+3 Tcl+4



 

Figure 3. Voltage phase angles after three phase short circuit for 260ms (a) and 270ms (b) on line23-24 

Maximum value of matrix A for case (a) is 141 

degrees and it is related to G34 and G35. Two 

samples later, the maximum of A has changed to 

138.2 degrees and three samples after that, it is 136.8 

degrees. Therefore, the algorithm stops and the 

system status is indicated as stable. But maximum 

value of matrix A in case (b) is 192 degrees which 

exceeds from the obtained threshold. Therefore, the 

algorithm stops and the system status is indicated as 

unstable. After this indication, the difference 

between G34 and G35 is increased and the required 

remedial action is done.      

B. Recognizing Critical Generators 

In this section, it is explained that after fault 

detection and obtaining the fault clearing, data of all 

generators, at these times with time tag sending to 

control center and then using (8), (9) and (10) critical 

generators are recognized. 
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Applying above equations (i.e., (8)-(10)) for all 

generators, the generator group which has a 

maximum of ib  is determined as the critical 

generator group. Once ib  for two or three generators 

is identified to be more than the rest of generators, 

the group of critical generators should be defined. 

Therefore, status of generator groups is recognized 

and the  

If 4.0 ji bb i and j are coherent                           (11) 

Therefore, status of generator groups is recognized 

and the group which contains the most ib  value is 

considered as the critical group.    

 C. Prediction of Generator Stability Status 

Decision boundaries indicate the stability border of 

system. They are defined using optimization 

problems which, themselves, are solved using 

numerous kinds of criteria e.g. voltage magnitude, 

voltage phase angle and their derivatives. The goal 

of this section is to determine decision boundaries 

for generators. In the following, the optimization 

problem is explained, and is then solved considering 

different criteria and at the end, the best boundary 

with the least error for prediction is selected for each 

generator. 

This problem can be defined in the form of a binary 

classification. 


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To cope with this issue, logistic regression is often 

used [25]. This method is one of the pattern 

recognition methods in which defined function 

should be between zero and one. The considered 

function is a sigmoid which is stated as 
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Cost function is defined by (15) and it shows the 

prediction error of generator stability status. 

  )15(        

2

1

))())(((
2

1




m

i

iyiXh
m


 Cost Function 

Since )(xh is nonlinear, cost function is non-

convex and thus finding the global optimum is hard, 

the obtained answer may stay in the local optimum.  

To avoid this issue, the cost function is rewritten as 
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Therefore, the problem changes into a convex 

function optimization for which, using a genetic 

algorithm, the optimum result can be achieved. This 

value can be determined using the offline data 

boundary and then, it can be evaluated using the test 

data. The prediction error is defined by that p is 

number of test case. 
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In the following, performance of the explained 

method is evaluated and the decision boundary of 

generators for the system under study is obtained. 

For this goal, 272 contingencies are applied 193 

cases of which are stable and the other 79 cases are 

unstable. For creating the decision boundary of 

different generators, 75% of the data was used for 

training and the stability border was tested by rest of 

the data. Now, the decision boundary for the voltage 

magnitude, the voltage phase angle ( V, )in two-

dimensional plane is obtained for generator 36 of 

IEEE 39-Bus system. Also, precision of generator 

status prediction with these two criteria is obtained.  

The obtained decision boundary using ( V, ): 

voltage magnitude and voltage phase angle are 

applied to the algorithm 150ms after clearing the 

fault. Then, using optimization, coefficients of 

decision boundary are calculated. 150ms after 

clearing the fault (this time was obtained by 

simulation), the test data is compared with the pre-

determined boundary and stability status of 

generators are predicted. For this indicator, decision 

boundary is obtained by a first-degree polynomial, a 

quadratic polynomial and a third-degree 

polynomial. The obtained decision boundary and the 

test data are shown in Figure 4. 

Moreover, precision of boundaries for these two 

criteria are calculated and illustrated in Table 3. 

 

 

 

Figure 4. Decision boundary for ( V, ) criteria. (a) First-degree polynomial, (b) quadratic polynomial and (c) 

third-degree polynomial  

 



Table 3. Prediction error of stability status for 

generator 36 with ( V, )  criteria 

Order of 

polynomial 

Precision of Prediction (%) 

 

1 86.28 

2 88.34 

3 89.17 

4 87.08 

 

Table 4. Prediction error of stability status of 

generator 36 with different criteria 

Criterion 
Order of 

polynomial 

Precision of 

prediction (%) 

),(  
 

1 86.72 

2 88.07 

3 88.54 

4 87.48 

),(  
 

1 84.43 

2 86.91 

3 86.56 

4 87.31 

),(  
 

1 88.57 

2 88.79 

3 90.46 

4 89.56 

),( VV 
 

1 90.38 

2 91.77 

3 91.04 

4 91.44 

),,(  
 

1 88.61 

2 89.31 

3 90.69 

),,( V 
 

1 89.37 

2 89.93 

3 90.12 

),,( V
 

1 91.23 

2 91.54 

3 91.82 

),,( VV 
 

1 90.55 

2 91.71 

3 92.38 

),,,( VV 
 

1 94.74 

2 94.95 

3 96.26 

),,,( VV 
 

1 91.09 

2 90.87 

3 91.76 

),,,( VV  
 

1 91.73 

2 92.21 

3 92.77 

 

The algorithm is applied to different generators with 

different criteria in a similar way. Results of this 

method are shown in table 4. Finally, according to 

these results, the best criterion with the most 

accuracy is selected for prediction of generator 

stability status. According to above results for 

generator 36, the best criterion is ),,,( VV   with 

a third-degree polynomial. Using this boundary, 

stability status of generator 36 is predicted for the 

tested data with the accuracy of 96.26%. This 

algorithm applies to other generators of study 

system as well. The performance precision of the 

decision boundary for different generators is shown 

in table 5. Eventually, decision making for 

generators is based on results of table 5. 

Table 5. Precision of decision boundary for 

different generators of IEEE 39-Bus system 

Generators 
Precision of 

prediction (%) 

30 96.55 

31 95.9 

32 97.18 

33 95.38 

34 96.81 

35 96.3 

36 96.26 

37 96.94 

38 95.89 

 

D. Decision Procedure  

So far, the algorithm for prediction of system 

stability status, algorithm for recognizing the critical 

generator and the algorithm for prediction of the 

generator transient stability status have been 

introduced. Here, the general method for decision 

making is explained. After fault detection, online 

prediction of the system stability status is started. 

Determination of critical generator using data of 

occurring fault and clearing fault is done separately. 

Furthermore, using data of 150ms after clearing the 

fault and obtained optimizing decision boundary for 

different generators, transient stability status of 

generators are predicted. 

Graphic chart for the decision algorithm is shown in 

figure 5. As can be seen, when rotor angles 

difference of two generators exceeds from the 

threshold value, an alarm is sent to the control center 

and then, the critical and unstable generators should 

be shed quickly. Once one generator is predicted as 

unstable and critical, it should be shed immediately. 



 

Figure 5. Graphic chart for decision algorithm 

 

V. Simulation Result 

IEEE 39-Bus system 

IEEE 39-Bus system (see Figure 7) is used to verify 

the proposed method. This system is well-known as 

10-machine New-England Power System and is 

used widely for transient stability assessments. It has 

10 generating units, 39 buses, 19 loads and 46 

transmission lines [26]. It is assumed that all 

generator buses are equipped with PMU and five 

indicators (   ,,,, VV ) would be measured and 

sent by PMUs to the control center. Performance of 

the algorithm is evaluated on a contingency, and the 

results are shown in the following. 

Scenario  

a) Two faults is applied to 19-16 and 3-2 

transmission lines at t=2s. Then, after 200ms, fault 

became cleared. After the fault detection, the 

algorithm is initiated. At this stage, rotor angles of 

generators are shown in Figure 7. And the maximum 

difference between them is revealed in table 6. 

 

Figure 6. New England 39 bus test system 



 

Figure 7. Voltage phase angles of generators for scenario a 

 

Table6. The maximum difference between voltage 

phase angles of generators versus time in scenario a 

Time (s) 
Maximum difference between voltage 

phase angles of generators (deg) 

2.22 47.78 

2.24 51.18 

2.26 53.78 

2.28 55.48 

2.30 56.22 

2.32 55.97 

2.34 54.72 

2.36 52.49 

2.38 49.36 

2.40 45.41 

 

According to the results in the table11, it can be seen 

that the maximum difference decreases over time 

after st 3.2 . Therefore, the system is stable and 

no remedial action is required. In addition, the 

algorithm has stopped waiting for the next fault 

detection. The algorithm recognizes the critical 

generator and its stability status, individually, but 

according to stability status of the system, it does not 

have to determine generator stability status and 

critical generators.   

b) Now, the clearing time increases to the edge of 

stability border. In this situation, the system is stable 

but if clearing time increases by 10ms, the system 

will be unstable. In this case, the fault is cleared at

st 54.2 . Rotor angles of the generators are 

shown in Figure 8. 

 

 

 

Figure 8. Voltage phase angles of generators for scenario b 

Table 7. The maximum difference between voltage 

phase angles of generators versus time in scenario b 

Time (s) 

Maximum difference between 

voltage phase angles of generators 

(deg) 

2.56 167.21 

2.58 174.98 

2.62 184.28 

2.64 186.42 

2.66 187.3 

 

Also, after fault detection, the algorithm is initiated. 

The maximum voltage phase angle difference 

between the generators which is monitored online is 

shown in table 7. 

In this case, the system is stable and no remedial 

action is required. Results of the algorithm actions 

for determination of the critical generator are 

collected in table 8. 
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Table 8. Value of definition index for determining critical generator in scenario b 

Gi G30 G31 G32 G33 G34 G35 G36 G37 G38 

bi 2.75 2.24 2.44 3.41 3.11 2.53 2.56 2.44 2.54 

 

 

Figure 9. Voltage phase angles of generators for scenario c 

Table 9. The maximum difference between voltage phase angles of generators versus time in scenario c 

 

Time (s) 
Maximum difference between voltage phase 

angles of generators (deg) 

2.56 168.6 

2.58 176.72 

2.60 183.69 

2.62 189.16 

2.64 194.27 

2.65 197.43 

2.66 199.96 

2.67 203.38 

Table 10. Value of definition index for determine critical generator in scenario c 

Gi G30 G31 G32 G33 G34 G35 G36 G37 G38 

bi 2.75 2.24 2.42 3.43 3.05 2.23 2.55 2.44 2.5 

 

It can be seen from table 8 that G33 and G34 are the 

critical generators. Also, using the obtained decision 

boundary and data at st 69.2 , G33 is identified 

as unstable, while the rest of the generators are 

identified as stable. According to the system stability 

status, the system is, in sum, identified as stable and 

not any tripping or remedial action is required for 

any of the generators (even G33). 

 c) Now, if the clearing time increases, the system 

will be unstable. In this case, fault clearing occurs at 

st 55.2 . Voltage phase angles for this situation 

are shown in Figure9. In this situation, the maximum 

voltage phase angle difference between different 

generators is monitored online as shown in table 9. 

In this case, the system is unstable and some 

remedial action is required. The result of the 

algorithm application for this case is illustrated the 

determination of critical generator in Table 10. 

It can be seen from Table 10 that G33 and G34 are 

the critical generators and G33 is the most critical 

one. Also, using the obtained decision boundary and 

the data at st 70.2 , G33 is identified as unstable, 

whereas the rest of the generators are identified as 

stable. 

 According to the system stability status, the system 

is identified as unstable and loses synchronism. 

Therefore, an alarm is sent it to the control center 

and then, G33 would be shed quickly. By using this 

algorithm and considering delays of PMU and 

communication links, G33 is shed at st 85.2
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Figure 10. Voltage phase angle of generators. (a) Without generator shedding (b) G33 is shed by the algorithm

 

No remedial action is taken at this stage, the system 

will be unstable and loss of synchronism will be 

inevitable. Results of these two mentioned cases are 

shown in Figure 10.     

According to Figure 10, performance of the 

algorithm is acceptable and it prevents spreading out 

the instability to the rest of the system. 

VI. Conclusion 

This paper introduces a novel method to predict the 

stability status of a power system and a generator 

system individually. The proposed method 

compensates delay of PMU and transferring data, 

thus generator’s data are accessible with high 

accuracy. Using the provided highly accurate online 

data, the algorithm is able to predict the generators 

instability in a short period of time. Besides, it can 

predict the stability status of power systems online. 

The proposed method was tested on IEEE 39-Bus 

system where acceptable performance was verified. 

It is shown that the proposed algorithm provides 

very high reliability since its different parts support 

each other; a fact which augments the accuracy of 

decision making. 
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